论文笔记:Going deeper with convolution

本文探讨了Inception网络设计背后的动机:如何使卷积神经网络既深又宽的同时避免资源限制和过拟合问题。文章提出了两个解决方案:一是通过1x1卷积减少冗余信息并压缩特征;二是引入辅助损失函数加速训练过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. Motivation of inception: To make deeper and wider CNN comes with two drawbacks: limitation of examples and increasing computational resources.  ==> need to move from fully connected to sparsely connected architectures. 

2. Solutions:

i. use 1 x 1 convolutions before 3 x3 and 5 x 5 ==> reduce redundant infor and reduce dim ( 'keep the network sparse at most places and compress the signals only whenever they have to be aggregated')



ii. introduce loss functions at hidden layers during training process
a. the model will converge faster (overthrown latter?)
b. loss of final layer: loss of auxiliary classifiers  = 1: 0.3 




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值