leetcod - Merge k Sorted Lists

本文探讨了如何将多条已排序链表合并为一条排序链表,并详细分析了算法的时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity.
如果有k条链表,每条n个节点,2n * k/2 + 4n * k/4 +……= O( nk log k )
思路:第一次 :最后一个融合到第一个,删除最后一个链表;倒数第二个融合到第二个,删除最后一个(原先的倒数第二个),……
     第二次 : 重复第一次
……
     直到 只有一个链表
#include 
#include 
#include 

using namespace std;
//  Definition for singly-linked list.
  struct ListNode {
      int val;
      ListNode *next;
      ListNode(int x) : val(x), next(NULL) {}
  };

class Solution {
public:
    ListNode* mergeKLists(vector& lists) {
        int len;
                if(lists.size()==0)
                        return NULL;
        while( (len=lists.size()) > 1 )
        {
            int index=len/2;
            for(int i=0;ival>second->val)
                {
                    lists[i]=second;
                    second=second->next;
                }
                else
                {
                    first=first->next;
                }
                currNode=lists[i];
                while(second!=NULL && first!=NULL)
                {
                    if(first->valval)
                    {
                        currNode->next=first;
                        currNode=currNode->next;
                        first=first->next;
                    }
                    else
                    {
                        currNode->next=second;
                        currNode=currNode->next;
                        second=second->next;
                    }
                }
                ListNode* tmp=first==NULL?second:first;
                while(tmp!=NULL)
                {
                    currNode->next=tmp;
                    currNode=currNode->next;
                    tmp=tmp->next;
                }
                currNode->next=NULL;
                lists.pop_back();
            }
        }
        return lists[0];
    }
};

int main()
{
        Solution s;
        ListNode* node=NULL;
        vector vc;
        vc.push_back(node);
        vc.push_back(node);
        cout<
To merge k sorted linked lists, one approach is to repeatedly merge two of the linked lists until all k lists have been merged into one. We can use a priority queue to keep track of the minimum element across all k linked lists at any given time. Here's the code to implement this idea: ``` struct ListNode { int val; ListNode* next; ListNode(int x) : val(x), next(NULL) {} }; // Custom comparator for the priority queue struct CompareNode { bool operator()(const ListNode* node1, const ListNode* node2) const { return node1->val > node2->val; } }; ListNode* mergeKLists(vector<ListNode*>& lists) { priority_queue<ListNode*, vector<ListNode*>, CompareNode> pq; for (ListNode* list : lists) { if (list) { pq.push(list); } } ListNode* dummy = new ListNode(-1); ListNode* curr = dummy; while (!pq.empty()) { ListNode* node = pq.top(); pq.pop(); curr->next = node; curr = curr->next; if (node->next) { pq.push(node->next); } } return dummy->next; } ``` We start by initializing a priority queue with all the head nodes of the k linked lists. We use a custom comparator that compares the values of two nodes and returns true if the first node's value is less than the second node's value. We then create a dummy node to serve as the head of the merged linked list, and a current node to keep track of the last node in the merged linked list. We repeatedly pop the minimum node from the priority queue and append it to the merged linked list. If the popped node has a next node, we push it onto the priority queue. Once the priority queue is empty, we return the head of the merged linked list. Note that this implementation has a time complexity of O(n log k), where n is the total number of nodes across all k linked lists, and a space complexity of O(k).
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值