时间复杂度

计算方法

1. 一般情况下,算法的基本操作重复执行的次数是模块n的某一个函数f(n),因此,算法的时间复杂度记做:T(n)=O(f(n))
分析:随着模块n的增大,算法执行的时间的增长率和 f(n) 的增长率成正比,所以 f(n) 越小,算法的时间复杂度越低,算法的效率越高。
2. 在计算时间复杂度的时候,先找出算法的基本操作,然后根据相应的各语句确定它的执行次数,再找出 T(n) 的同 数量级(它的同数量级有以下:1,log 2n,n,n log 2n ,n的平方,n的三次方,2的n次方,n!),找出后,f(n) = 该数量级,若 T(n)/f(n) 求极限可得到一常数c,则时间复杂度T(n) = O(f(n))
例:算法:
1
2
3
4
5
6
7
8
9
for (i=1; i<=n; ++i)
{
     for (j=1; j<=n; ++j)
     {
         c[i][j] = 0; //该步骤属于基本操作执行次数:n的平方次
         for (k=1; k<=n; ++k)
             c[i][j] += a[i][k] * b[k][j]; //该步骤属于基本操作执行次数:n的三次方次
     }
}
则有 T(n) = n 的平方+n的三次方,根据上面括号里的同数量级,我们可以确定 n的三次方 为T(n)的同数量级
则有 f(n) = n的三次方,然后根据 T(n)/f(n) 求极限可得到常数c
则该算法的时间 复杂度:T(n) = O(n^3) 注:n^3即是n的3次方。
3.在pascal中比较容易理解,容易计算的方法是:看看有几重for循环,只有一重则时间复杂度为O(n),二重则为O(n^2),依此类推,如果有二分则为O(logn),二分例如 快速幂 、二分查找,如果一个for循环套一个二分,那么时间复杂度则为O(nlogn)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值