Minimum Inversion Number
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 22602 Accepted Submission(s): 13452
Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
101 3 6 9 0 8 5 7 4 2
Sample Output
16
先求出逆序数
每次交换后的逆序数值可以直接算出来,
移动后当前逆序对数就要减去比第一个数小的个数,再加上比它大的数的个数
这样我们求出一次移动后的逆序对数
这时候我们发现下一次移动直接修改答案就好,不需要改动树状数组
推出式子ans+=n-reflect[i]-(reflect[i]-1)
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=500005;
struct Node
{
int val;
int pos;
};
Node node[N];
int c[N],reflect[N],n;
bool cmp(const Node& a, const Node& b)
{
return a.val < b.val;
}
int lowbit(int x)
{
return x & (-x);
}
void update(int x)
{
for(int i = x; i <= n; i += lowbit(i))
{
c[i] ++;
}
}
int getsum(int x)
{
int sum = 0;
for(int i = x; i > 0; i -= lowbit(i))
{
sum += c[i];
}
return sum;
}
int main()
{
while (scanf("%d",&n)!=EOF&&n)
{
for (int i=1;i<=n;++i)
{
scanf("%d", &node[i].val);
node[i].pos = i;
}
sort(node+1,node+n+1,cmp);
for(int i = 1; i <= n; ++i)
reflect[node[i].pos] = i;
for(int i=1; i<=n;++i)
c[i]=0;
long long ans = 0;
for(int i=1;i<=n;++i)
{
update(reflect[i]);
ans+= i-getsum(reflect[i]);
}
long long mn=ans;
mn=min(mn,ans);
for(int i=1;i<=n;i++)
{
ans+=n-reflect[i]-(reflect[i]-1);
mn=min(mn,ans);
}
printf("%lld\n",mn);
}
return 0;
}