
Keras
Keras & tensorflow
lbaihao
zephyr,data structure, algorithm, protocol,darknet,architecture
展开
-
利用keras框架cnn+ctc_loss识别不定长中英文图片
(1)def ctc_lambda_func(args): y_pred, y_true, input_x_width, input_y_width = args # the 2 is critical here since the first couple outputs of the RNN # tend to be garbage: y_pred = y_pred[:, :, :] return keras.backend.ctc_batch_cost(y原创 2021-08-18 13:35:07 · 258 阅读 · 0 评论 -
icdar13_split_label.py
import osimport numpy as npimport mathimport cv2 as cv# path = '/media/D/code/OCR/text-detection-ctpn/data/mlt_english+chinese/image'# gt_path = '/media/D/code/OCR/text-detection-ctpn/data/mlt_english+chinese/label'path = '/home/cwq/data/ICDAR13/C.原创 2021-08-07 23:31:13 · 171 阅读 · 0 评论 -
xml2txt.py
#coding=utf-8import osimport sysimport xml.etree.ElementTree as ETimport globdef xml_to_txt(indir,outdir): os.chdir(indir) annotations = os.listdir('.') annotations = glob.glob(str(annotations)+'*.xml') for i, file in enumerate(ann.原创 2021-08-07 23:15:58 · 154 阅读 · 0 评论 -
txt2xml.py
# -*- coding:UTF-8 -*-import os, sysimport globfrom PIL import Image# 图像存储位置src_img_dir = r"E:\dataset\CTPNSample\JPEGImages"# 图像的 ground truth 的 txt 文件存放位置src_txt_dir = r"E:\dataset\CTPNSample\label"# 生成xml文件存放位置src_xml_dir = r"E:\dataset\CTPNS.原创 2021-08-07 23:14:38 · 374 阅读 · 0 评论 -
transform_to_voc.py
from xml.dom.minidom import Documentimport cv2import osimport globimport shutilimport numpy as npglobal_outdir = '/tmp/TEXTVOC_ICDAR_2015/VOC2007'def generate_xml(name, lines, img_size, class_sets, doncateothers=True): doc = Document() .原创 2021-08-07 23:09:39 · 123 阅读 · 0 评论 -
split_gt_bbox.py
from __future__ import divisionimport osimport numpy as npimport mathimport cv2 as cv#download the dataset from here: # http://rrc.cvc.uab.es/?ch=4&com=downloadsg_image_path = '/tmp/ICDAR_2015/training_images'g_gt_path = '/tmp/ICDAR_2015/gt.原创 2021-08-07 23:08:08 · 110 阅读 · 0 评论 -
python 图像处理
from PIL import Imageim = Image.open("1.jpg")img_size = im.sizeprint("w,h{}".format(img_size))x = (600 - 448)/2y = (967 - 448)/2w = 448h = 448im = im.crop((x, y, x+w, y+h))x = (448 - 224)/2y = (448 - 224)/2w = 224h = 224im = im.crop((x, y,.原创 2021-08-06 23:08:48 · 220 阅读 · 0 评论 -
NMS非极大值抑制原理及实现
import numpy as npimport randomimport cv2def non_max_suppress(predicts_dict, threshold): for object_name, bbox in predicts_dict.items(): # 对每一个类别分别进行NMS;一次读取一对键值(即某个类别的所有框) bbox_array = np.array(bbox, dtype=np.float) # 下面分别获取框的...原创 2021-07-09 20:33:59 · 182 阅读 · 0 评论 -
Keras入门(二)模型的保存、读取及加载
https://blog.youkuaiyun.com/jclian91/article/details/83038861原创 2021-07-09 11:00:52 · 392 阅读 · 0 评论 -
AI车牌检测与识别(YOLO)
https://github.com/Feeyao/License-plate-recognitionhttps://guoqiang.blog.youkuaiyun.com/article/details/104040582?utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromBaidu%7Edefault-18.control&depth_1-utm_source=distribute.pc_rele原创 2021-07-01 09:24:50 · 1047 阅读 · 0 评论 -
全连接层的作用是什么?
以下是我看过最好的全连接层的解释!原文链接:卷积神经网络(CNN)入门讲解关注专栏以上图为例,我们仔细看上图全连接层的结构,全连接层中的每一层是由许多神经元组成的(1 × 4096)的平铺结构,上图不明显,我们看下图:注:上图和我们要做的下面运算无联系并且不考虑激活函数和bias当我第一次看到这个全连接层,我的第一个问题是:它是怎么样把3x3x5的输出,转换成1x4096的形式?很简单,可以理解为在中间做了一个卷积。从上图我们可以看出,我们用一个 3×3×5 的 filter 去卷积原创 2021-04-17 16:56:55 · 3083 阅读 · 0 评论 -
深入理解卷积层,全连接层的作用意义
https://blog.youkuaiyun.com/m0_37407756/article/details/80904580转载 2019-03-12 16:03:36 · 1214 阅读 · 0 评论