plda源码(十)
Sparse LDA
StandardGibbs采样公式如下
q(z)=nk,¬it+βnk,¬i+βV(nm,¬ik+αk)\begin{aligned} q(z) &= \frac{n^{t}_{k,\neg i} + \beta}{n_{k,\neg i} + \beta V}(n^{k}_{m,\neg i} + \alpha_k) \end{aligned}q(z)=nk,¬i+βVnk,¬it+β(nm,¬ik+αk)
nktn^{t}_{k}nkt 是单词t在主题k上的分布, nmkn^{k}_{m}nmk是文档m在主题k上的分布, nkn_{k}nk是所有单词在主题k上的分布
每个采样迭代复杂度是O(MNm‾K)O(M\overline{N_m}K)O(MNmK), ( Nm‾\overline{N_m}Nm 表示训练文档的平均长度);内存消耗主要在 nmkn^{k}_{m}nmk 和 nktn^{t}_{k}nkt,假设都采用Dense存储,内存复杂度是 O(K(M+V))O\left(K(M+V)\right)O(K(M+V))
sparseLDA
因为nmkn^{k}_{m}nmk 和 nktn^{t}_{k}nkt一般很稀疏,SparseLDA 将 QQQ变形
Q=∑knk,¬it+βnk,¬i+βV(nm,¬ik+αk)=∑k(nk,¬it(nm,¬ik+αk)nk,¬i+βV+βnm,¬iknk,¬i+βV+βαknk,¬i+βV)=∑knk,¬it(nm,¬ik+αk)nk,¬i+βV⎵E+∑kβnm,¬iknk,¬i+βV⎵F+∑kβαknk,¬i+βV⎵GQ = \sum_k \frac{n^{t}_{k,\neg i} + \beta}{n_{k,\neg i} + \beta V}\left(n^{k}_{m,\neg i} + \alpha_k\right) \\
= \sum_k \left(\frac{n^{t}_{k,\neg i}\left(n^{k}_{m,\neg i} + \alpha_k\right)}{n_{k,\neg i} + \beta V} + \frac{\beta n^{k}_{m,\neg i}}{n_{k,\neg i} + \beta V} + \frac{\beta \alpha_k}{n_{k,\neg i} + \beta V}\right) \\
= \underbrace{\sum_k \frac{n^{t}_{k,\neg i}\left(n^{k}_{m,\neg i} + \alpha_k\right)}{n_{k,\neg i} + \beta V}}_E + \underbrace{\sum_k \frac{\beta n^{k}_{m,\neg i}}{n_{k,\neg i} + \beta V}}_F + \underbrace{\sum_k \frac{\beta \alpha_k}{n_{k,\neg i} + \beta V}}_GQ=∑knk,¬i+βVnk,¬it+β(nm,¬ik+αk)=∑k(nk,¬i+βVnk,¬it(nm,¬ik+αk)+nk,¬i+βVβnm,¬ik+nk,¬i+βVβαk)=Ek∑nk,¬i+βVnk,¬it(nm,¬ik+αk)+Fk∑nk,¬i+βVβnm,¬ik+Gk∑nk,¬i+βVβαk
令 E=∑ke(k)E=\sum_k e(k)E=∑ke(k)、F=∑kf(k)F=\sum_k f(k)F=∑kf(k) 和 G=∑kg(k)G=\sum_k g(k)G=∑kg(k)。其中 EEE 包含 ∣Nonzero(nk,¬it)∣|Nonzero(n^{t}_{k,\neg i})|∣Nonzero(nk,¬it)∣项,称为“topic word”桶;FFF 包含 ∣Nonzero(nm,¬ik)∣|Nonzero(n^{k}_{m,\neg i})|∣Nonzero(nm,¬ik)∣项,称为“document topic” 桶;GGG 包含 KKK 项,称为“smoothing only”桶。
c(z=k)=nm,¬ik+αknk,¬i+βVc(z=k) = \frac{n^{k}_{m,\neg i} + \alpha_k}{n_{k,\neg i} + \beta V}c(z=k)=nk,¬i+βVnm,¬ik+αk
e(z=k)=nk,¬itc(k)e(z=k) = n^{t}_{k,\neg i}c(k)e(z=k)=nk,¬itc(k)
f(z=k)=βnm,¬iknk,¬i+βVf(z=k) = \frac{\beta n^{k}_{m,\neg i}}{n_{k,\neg i} + \beta V}f(z=k)=nk,¬i+βVβnm,¬ik
g(z=k)=βαknk,¬i+βVg(z=k) = \frac{\beta \alpha_k}{n_{k,\neg i} + \beta V}g(z=k)=nk,¬i+βVβαk
采样文档中词的主题时,首先计算 Q=E+F+GQ=E+F+GQ=E+F+G,同时生成一个随机变量U∼Uniform(0,Q)U∼Uniform(0,Q)U∼Uniform(0,Q),然后在三个桶里进行具体的主题采样:
若 U<EU<EU<E,主题落在“topic word” 桶;
若 U<E+FU<E+FU<E+F,主题落在“document topic”桶;
否则,主题落在“smoothing only”桶。
class SparseLDASampler : public BaseSampler {
private:
vector<double> e_;
vector<double> f_;
vector<double> g_;
double G;
vector<double> c_;
map<int64, int32> n_mk;
map<int32, int64> n_kw;
};
e_.resize(model_->num_topics());
f_.resize(model_->num_topics());
g_.resize(model_->num_topics());
c_.resize(model_->num_topics());
//初始化
G = 0;
double betaV = vocab_size * beta_;
for (int i = 0; i < num_topics; i++) {
c_[i] = alpha_ /
(model_->GetGlobalTopicDistribution()[i] + betaV);
g_[i] = (alpha_ * beta_) / (model_->GetGlobalTopicDistribution()[i] + betaV);
G += g_[i];
}
//一个文档的一次采样
double F = 0;
int vocab_size;//词典大小
double betaV = vocab_size * beta_;
unordered_map<int, int> n_mk_map = document->GetTopicDist();//文档的topic->count,稀疏
for (iter = n_mk_map.begin();iter != n_mk_map.end(); iter++) {
int topic = iter->first;
c_[topic] = (document->topic_distribution()[topic] + alpha_) /
(model_->GlobalTopicDistribution()[topic] + betaV);//该文档没有出现的topic的c函数为alpha/(global[topic] +betaV)
f_[topic] = (beta_ * document->topic_distribution()[topic]) /
(model_->GetGlobalTopicDistribution()[topic] + betaV);//未出现的topic的f函数为0
F += f_[topic];
}
for (iterator(document);
!iterator.Done(); iterator.Next()) {//在文档word上的迭代
int current_topic = iterator.Topic();
int old_topic = current_topic;
double numer_mk = document->topic_distribution()[old_topic] - 1;
double denom = model_->GetGlobalTopicDistribution()[old_topic] - 1 + betaV;
// update all the statistic associate with old_topic
c_[old_topic] = (numer_mk + alpha_) / denom;
double f_update = beta_ * numer_mk / denom - beta_ * (numer_mk + 1) / (denom + 1);
f_[old_topic] += f_update;
F = F + f_update;
double g_update = beta_ * alpha_ * (1 / denom - 1/ (denom + 1));
g_[old_topic] += g_update;
G += g_update;
double E = 0;
unordered_map<int, int> n_kw_map = model_->GetTopicDistByWord(iterator.Word());//word的topic->count,稀疏
for (kw_iter = n_kw_map.begin();kw_iter != n_kw_map.end(); kw_iter++) {
int topic_tmp = kw_iter->first;
int n_kw_factor = kw_iter->second;
if (topic_tmp == old_topic) {
n_kw_factor -= 1;
}
e_[topic_tmp] = n_kw_factor * c_[topic_tmp];
E += e_[topic_tmp];
}
double total = E + F + G;
n_mk_map = document->GetTopicDist();
double choice = random->RandDouble() * total;
int new_topic = -1;
if (choice < E) {
new_topic = SampleInBucketWithMap(n_kw_map, e_, choice);
} else if (choice < E + F) {
new_topic = SampleInBucketWithMap(n_mk_map, f_, choice - E);
} else {
new_topic = SampleInSmoothBucket(g_, choice - E - F);
}
if (update_model) {
model_->ReassignTopic(iterator.Word(), iterator.Topic(), new_topic, 1);
}
iterator.SetTopic(new_topic);
// update all the statistic associate with new_topic
numer_mk = document->topic_distribution()[new_topic];
denom = model_->GetGlobalTopicDistribution()[new_topic] + betaV;
c_[new_topic] = (numer_mk + alpha_) / denom;
f_update = beta_ * numer_mk / denom - beta_ * (numer_mk - 1) / (denom - 1);
f_[new_topic] += f_update;
F = F + f_update;
g_update = beta_ * alpha_ * (1 / denom - 1/ (denom - 1));
g_[new_topic] += g_update;
G += g_update;
}
n_mk_map = document->GetTopicDist();
iter = n_mk_map.begin();
for (;iter != n_mk_map.end(); iter++) {
int topic = iter->first;
c_[topic] = alpha_ / (model_->GetGlobalTopicDistribution()[topic] + betaV);
}
int SparseLDASampler::SampleInBucketWithMap(unordered_map<int, int>& map,
vector<double>& vec_, double choice) const {
double sum_so_far = 0.0;
for (const auto &kv : map) {
sum_so_far += vec_[kv.first];
if (sum_so_far >= choice) {
return kv.first;
}
}
}
int SparseLDASampler::SampleInSmoothBucket(
const vector<double>& distribution, double choice) const {
double sum_so_far = 0.0;
for (int i = 0; i < distribution.size(); ++i) {
sum_so_far += distribution[i];
if (sum_so_far >= choice) {
return i;
}
}
}