CF动态规划一--Cut Ribbon--完全背包

本文介绍了一种算法,用于解决将固定长度的丝带切割成长度为a、b或c的小段,使得小段数量最大的问题。通过动态规划方法实现了这一目标,并给出了具体的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A. Cut Ribbon

time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Polycarpus has a ribbon, its length is n. He wants to cut the ribbon in a way that fulfils the following two conditions:

  • After the cutting each ribbon piece should have length ab or c.
  • After the cutting the number of ribbon pieces should be maximum.

Help Polycarpus and find the number of ribbon pieces after the required cutting.

Input

The first line contains four space-separated integers nab and c (1 ≤ n, a, b, c ≤ 4000) — the length of the original ribbon and the acceptable lengths of the ribbon pieces after the cutting, correspondingly. The numbers ab and c can coincide.

Output

Print a single number — the maximum possible number of ribbon pieces. It is guaranteed that at least one correct ribbon cutting exists.

Examples

input

Copy

5 5 3 2

output

Copy

2

input

Copy

7 5 5 2

output

Copy

2

Note

In the first example Polycarpus can cut the ribbon in such way: the first piece has length 2, the second piece has length 3.

In the second example Polycarpus can cut the ribbon in such way: the first piece has length 5, the second piece has length 2.

#include<bits/stdc++.h>
using namespace std;
#define maxn 5000
int a[maxn];
int dp[maxn];
int main()
{
    int n;
    scanf("%d%d%d%d",&n,&a[0],&a[1],&a[2]);
    memset(dp,-9999,sizeof(dp));
    //将n分成长度为a,b,c的几份,使得份数最大
    dp[0]=0;
    for(int i=0;i<3;i++)
    {
        for(int j=a[i];j<=n;j++)
        {
            dp[j]=max(dp[j],dp[j-a[i]]+1);
        }
    }
    printf("%d\n",dp[n]);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值