被继承的类称为父类或基类,继承的类称为子类或派生类。“子类”和“父类”通常放在一起称呼,“基类”和“派生类”通常放在一起称呼。
派生类除了拥有基类的成员,还可以定义自己的新成员,以增强类的功能。
以下是两种典型的使用继承的场景:
1) 当你创建的新类与现有的类相似,只是多出若干成员变量或成员函数时,可以使用继承,这样不但会减少代码量,而且新类会拥有基类的所有功能。
2) 当你需要创建多个类,它们拥有很多相似的成员变量或成员函数时,也可以使用继承。可以将这些类的共同成员提取出来,定义为基类,然后从基类继承,既可以节省代码,也方便后续修改成员。
public、protected、private 指定继承方式
不同的继承方式会影响基类成员在派生类中的访问权限。
1) public继承方式
- 基类中所有 public 成员在派生类中为 public 属性;
- 基类中所有 protected 成员在派生类中为 protected 属性;
- 基类中所有 private 成员在派生类中不能使用。
2) protected继承方式
- 基类中的所有 public 成员在派生类中为 protected 属性;
- 基类中的所有 protected 成员在派生类中为 protected 属性;
- 基类中的所有 private 成员在派生类中不能使用。
3) private继承方式
- 基类中的所有 public 成员在派生类中均为 private 属性;
- 基类中的所有 protected 成员在派生类中均为 private 属性;
- 基类中的所有 private 成员在派生类中不能使用。
通过上面的分析可以发现:
1) 基类成员在派生类中的访问权限不得高于继承方式中指定的权限。例如,当继承方式为 protected 时,那么基类成员在派生类中的访问权限最高也为 protected,高于 protected 的会降级为 protected,但低于 protected 不会升级。再如,当继承方式为 public 时,那么基类成员在派生类中的访问权限将保持不变。
也就是说,继承方式中的 public、protected、private 是用来指明基类成员在派生类中的最高访问权限的。
2) 不管继承方式如何,基类中的 private 成员在派生类中始终不能使用(不能在派生类的成员函数中访问或调用)。
3) 如果希望基类的成员能够被派生类继承并且毫无障碍地使用,那么这些成员只能声明为 public 或 protected;只有那些不希望在派生类中使用的成员才声明为 private。
4) 如果希望基类的成员既不向外暴露(不能通过对象访问),还能在派生类中使用,那么只能声明为 protected。
注意,我们这里说的是基类的 private 成员不能在派生类中使用,并没有说基类的 private 成员不能被继承。实际上,基类的 private 成员是能够被继承的,并且(成员变量)会占用派生类对象的内存,它只是在派生类中不可见,导致无法使用罢了。private 成员的这种特性,能够很好的对派生类隐藏基类的实现,以体现面向对象的封装性。
继承方式/基类成员 | public成员 | protected成员 | private成员 |
---|---|---|---|
public继承 | public | protected | 不可见 |
protected继承 | protected | protected | 不可见 |
private继承 | private | private | 不可见 |
在派生类中访问基类 private 成员的唯一方法就是借助基类的非 private 成员函数,如果基类没有非 private 成员函数,那么该成员在派生类中将无法访问。
C++继承时的名字遮蔽问题
如果派生类中的成员(包括成员变量和成员函数)和基类中的成员重名,那么就会遮蔽从基类继承过来的成员。所谓遮蔽,就是在派生类中使用该成员(包括在定义派生类时使用,也包括通过派生类对象访问该成员)时,实际上使用的是派生类新增的成员,而不是从基类继承来的。
下面是一个成员函数的名字遮蔽的例子:
#include<iostream>
using namespace std;
//基类People
class People{
public:
void show();
protected:
char *m_name;
int m_age;
};
void People::show(){
cout<<"嗨,大家好,我叫"<<m_name<<",今年"<<m_age<<"岁"<<endl;
}
//派生类Student
class Student: public People{
public:
Student(char *name, int age, float score);
public:
void show(); //遮蔽基类的show()
private:
float m_score;
};
Student::Student(char *name, int age, float score){
m_name = name;
m_age = age;
m_score = score;
}
void Student::show(){
cout<<m_name<<"的年龄是"<<m_age<<",成绩是"<<m_score<<endl;
}
int main(){
Student stu("小明", 16, 90.5);
//使用的是派生类新增的成员函数,而不是从基类继承的
stu.show();
//使用的是从基类继承来的成员函数
stu.People::show();
return 0;
}
运行结果:
小明的年龄是16,成绩是90.5
嗨,大家好,我叫小明,今年16岁
本例中,基类 People 和派生类 Student 都定义了成员函数 show(),它们的名字一样,会造成遮蔽。第 37 行代码中,stu 是 Student 类的对象,默认使用 Student 类的 show() 函数。
但是,基类 People 中的 show() 函数仍然可以访问,不过要加上类名和域解析符,如第 39 行代码所示。
C++类继承时的作用域嵌套
当存在继承关系时,派生类的作用域嵌套在基类的作用域之内,如果一个名字在派生类的作用域内无法找到,编译器会继续到外层的基类作用域中查找该名字的定义。
换句话说,作用域能够彼此包含,被包含(或者说被嵌套)的作用域称为内层作用域(inner scope),包含着别的作用域的作用域称为外层作用域(outer scope)。一旦在外层作用域中声明(或者定义)了某个名字,那么它所嵌套着的所有内层作用域中都能访问这个名字。同时,允许在内层作用域中重新定义外层作用域中已有的名字。
假设 Base 是基类,Derived 是派生类,那么它们的作用域的嵌套关系如下图所示:
派生类的作用域位于基类作用域之内这一事实可能有点出人意料,毕竟在我们的代码中派生类和基类的定义是相互分离的。不过也恰恰因为类作用域有这种继承嵌套的关系,所以派生类才能像使用自己的成员一样来使用基类的成员。
一个类作用域嵌套的例子:
#include<iostream>
using namespace std;
class A{
public:
void func();
public:
int n;
};
void A::func(){ cout<<"c.biancheng.net"<<endl; }
class B: public A{
public:
int n;
int m;
};
class C: public B{
public:
int n;
int x;
};
int main(){
C obj;
obj.n;
obj.func();
cout<<sizeof(C)<<endl;
return 0;
}
运行结果:
c.biancheng.net
20
本例中,B 继承自 A,C继承自 B,它们作用域的嵌套关系如下图所示:
obj 是 C 类的对象,通过 obj 访问成员变量 n 时,在 C 类的作用域中就能够找到了 n 这个名字。虽然 A 类和 B 类都有名字 n,但编译器不会到它们的作用域中查找,所以是不可见的,也即派生类中的 n 遮蔽了基类中的 n。
通过 obj 访问成员函数 func() 时,在 C 类的作用域中没有找到 func 这个名字,编译器继续到 B 类的作用域(外层作用域)中查找,仍然没有找到,再继续到 A 类的作用域中查找,结果就发现了 func 这个名字,于是查找结束,编译器决定调用 A 类作用域中的 func() 函数。
编译器仅仅是根据函数的名字来查找的,不会理会函数的参数。换句话说,一旦内层作用域有同名的函数,不管有几个,编译器都不会再到外层作用域中查找,编译器仅把内层作用域中的这些同名函数作为一组候选函数;这组候选函数就是一组重载函数。
说白了,只有一个作用域内的同名函数才具有重载关系,不同作用域内的同名函数是会造成遮蔽,使得外层函数无效。派生类和基类拥有不同的作用域,所以它们的同名函数不具有重载关系。
在设计派生类时,对继承过来的成员变量的初始化工作也要由派生类的构造函数完成,但是大部分基类都有 private 属性的成员变量,它们在派生类中无法访问,更不能使用派生类的构造函数来初始化,解决这个问题的思路是:在派生类的构造函数中调用基类的构造函数
构造函数的调用顺序
从上面的分析中可以看出,基类构造函数总是被优先调用,这说明创建派生类对象时,会先调用基类构造函数,再调用派生类构造函数,如果继承关系有好几层的话,例如:
A --> B --> C
那么创建 C 类对象时构造函数的执行顺序为:
A类构造函数 --> B类构造函数 --> C类构造函数
构造函数的调用顺序是按照继承的层次自顶向下、从基类再到派生类的。
还有一点要注意,派生类构造函数中只能调用直接基类的构造函数,不能调用间接基类的。以上面的 A、B、C 类为例,C 是最终的派生类,B 就是 C 的直接基类,A 就是 C 的间接基类。
和构造函数类似,析构函数也不能被继承。与构造函数不同的是,在派生类的析构函数中不用显式地调用基类的析构函数,因为每个类只有一个析构函数,编译器知道如何选择,无需程序员干涉。
另外析构函数的执行顺序和构造函数的执行顺序也刚好相反:
- 创建派生类对象时,构造函数的执行顺序和继承顺序相同,即先执行基类构造函数,再执行派生类构造函数。
- 而销毁派生类对象时,析构函数的执行顺序和继承顺序相反,即先执行派生类析构函数,再执行基类析构函数。
C++多继承
多继承的语法也很简单,将多个基类用逗号隔开即可。例如已声明了类A、类B和类C,那么可以这样来声明派生类D:
class D: public A, private B, protected C{
//类D新增加的成员
}
D 是多继承形式的派生类,它以公有的方式继承 A 类,以私有的方式继承 B 类,以保护的方式继承 C 类。D 根据不同的继承方式获取 A、B、C 中的成员,确定它们在派生类中的访问权限。
多继承下的构造函数
多继承形式下的构造函数和单继承形式基本相同,只是要在派生类的构造函数中调用多个基类的构造函数。以上面的 A、B、C、D 类为例,D 类构造函数的写法为:
D(形参列表): A(实参列表), B(实参列表), C(实参列表){
//其他操作
}
基类构造函数的调用顺序和和它们在派生类构造函数中出现的顺序无关,而是和声明派生类时基类出现的顺序相同。仍然以上面的 A、B、C、D 类为例,即使将 D 类构造函数写作下面的形式:
D(形参列表): B(实参列表), C(实参列表), A(实参列表){
//其他操作
}
那么也是先调用 A 类的构造函数,再调用 B 类构造函数,最后调用 C 类构造函数。
命名冲突
当两个或多个基类中有同名的成员时,如果直接访问该成员,就会产生命名冲突,编译器不知道使用哪个基类的成员。这个时候需要在成员名字前面加上类名和域解析符::
,以显式地指明到底使用哪个类的成员,消除二义性。
借助指针突破访问权限的限制,访问private、protected属性的成员变量
在对象的内存模型中,成员变量和对象的开头位置会有一定的距离。以上面的 obj 为例,它的内存模型为:
图中假设 obj 对象的起始地址为 0X1000,m_a、m_b、m_c 与对象开头分别相距 0、4、8 个字节,我们将这段距离称为偏移(Offset)。一旦知道了对象的起始地址,再加上偏移就能够求得成员变量的地址,知道了成员变量的地址和类型,也就能够轻而易举地知道它的值。
当通过对象指针访问成员变量时,编译器实际上也是使用这种方式来取得它的值。为了说明问题,我们不妨将上例中成员变量的访问权限改为 public,再来执行第 18 行的语句:
int b = p->m_b;
此时编译器内部会发生类似下面的转换:
int b = *(int*)( (int)p + sizeof(int) );
p 是对象 obj 的指针,(int)p
将指针转换为一个整数,这样才能进行加法运算;sizeof(int)
用来计算 m_b 的偏移;(int)p + sizeof(int)
得到的就是 m_b 的地址,不过因为此时是int
类型,所以还需要强制转换为int *
类型;开头的*
用来获取地址上的数据。
如果通过 p 指针访问 m_a:
int a = p -> m_a;
那么将被转换为下面的形式:
int a = * (int*) ( (int)p + 0 );
经过简化以后为:
int a = *(int*)p;
突破访问权限的限制
上述的转换过程是编译器自动完成的,当成员变量的访问权限为 private 时,我们也可以手动转换,只要能正确计算偏移即可,这样就突破了访问权限的限制。
修改上例中的代码,借助偏移来访问 private 属性的成员变量:
#include <iostream>
using namespace std;
class A{
public:
A(int a, int b, int c);
private:
int m_a;
int m_b;
int m_c;
};
A::A(int a, int b, int c): m_a(a), m_b(b), m_c(c){ }
int main(){
A obj(10, 20, 30);
int a1 = *(int*)&obj;
int b = *(int*)( (int)&obj + sizeof(int) );
A *p = new A(40, 50, 60);
int a2 = *(int*)p;
int c = *(int*)( (int)p + sizeof(int)*2 );
cout<<"a1="<<a1<<", a2="<<a2<<", b="<<b<<", c="<<c<<endl;
return 0;
}
运行结果:
a1=10, a2=40, b=20, c=60
前面我们说 C++ 的成员访问权限仅仅是语法层面上的,是指访问权限仅对取成员运算符.
和->
起作用,而无法防止直接通过指针来访问。你可以认为这是指针的强大,也可以认为是 C++ 语言设计的瑕疵。
虚继承(Virtual Inheritance)
为了解决多继承时的命名冲突和冗余数据问题,C++ 提出了虚继承,使得在派生类中只保留一份间接基类的成员。
在继承方式前面加上 virtual 关键字就是虚继承,请看下面的例子:
//间接基类A
class A{
protected:
int m_a;
};
//直接基类B
class B: virtual public A{ //虚继承
protected:
int m_b;
};
//直接基类C
class C: virtual public A{ //虚继承
protected:
int m_c;
};
//派生类D
class D: public B, public C{
public:
void seta(int a){ m_a = a; } //正确
void setb(int b){ m_b = b; } //正确
void setc(int c){ m_c = c; } //正确
void setd(int d){ m_d = d; } //正确
private:
int m_d;
};
int main(){
D d;
return 0;
}
这段代码使用虚继承重新实现了上图所示的菱形继承,这样在派生类 D 中就只保留了一份成员变量 m_a,直接访问就不会再有歧义了。
虚继承的目的是让某个类做出声明,承诺愿意共享它的基类。其中,被共享的基类就称为虚基类(Virtual Base Class),本例中的 A 就是一个虚基类。在这种机制下,不论虚基类在继承体系中出现了多少次,在派生类中都只包含一份虚基类的成员。
现在让我们重新梳理一下本例的继承关系,如下图所示:
图2:使用虚继承解决菱形继承中的命名冲突问题
观察这个新的继承体系,我们会发现虚继承的一个不太直观的特征:必须在虚派生的真实需求出现前就已经完成虚派生的操作。在上图中,当定义 D 类时才出现了对虚派生的需求,但是如果 B 类和 C 类不是从 A 类虚派生得到的,那么 D 类还是会保留 A 类的两份成员。
换个角度讲,虚派生只影响从指定了虚基类的派生类中进一步派生出来的类,它不会影响派生类本身。
在实际开发中,位于中间层次的基类将其继承声明为虚继承一般不会带来什么问题。通常情况下,使用虚继承的类层次是由一个人或者一个项目组一次性设计完成的。对于一个独立开发的类来说,很少需要基类中的某一个类是虚基类,况且新类的开发者也无法改变已经存在的类体系。
C++标准库中的 iostream 类就是一个虚继承的实际应用案例。iostream 从 istream 和 ostream 直接继承而来,而 istream 和 ostream 又都继承自一个共同的名为 base_ios 的类,是典型的菱形继承。此时 istream 和 ostream 必须采用虚继承,否则将导致 iostream 类中保留两份 base_ios 类的成员。
图3:虚继承在C++标准库中的实际应用
虚基类成员的可见性
因为在虚继承的最终派生类中只保留了一份虚基类的成员,所以该成员可以被直接访问,不会产生二义性。此外,如果虚基类的成员只被一条派生路径覆盖,那么仍然可以直接访问这个被覆盖的成员。但是如果该成员被两条或多条路径覆盖了,那就不能直接访问了,此时必须指明该成员属于哪个类。
以图2中的菱形继承为例,假设 A 定义了一个名为 x 的成员变量,当我们在 D 中直接访问 x 时,会有三种可能性:
- 如果 B 和 C 中都没有 x 的定义,那么 x 将被解析为 A 的成员,此时不存在二义性。
- 如果 B 或 C 其中的一个类定义了 x,也不会有二义性,派生类的 x 比虚基类的 x 优先级更高。
- 如果 B 和 C 中都定义了 x,那么直接访问 x 将产生二义性问题。
C++虚继承时的构造函数
在虚继承中,虚基类是由最终的派生类初始化的,换句话说,最终派生类的构造函数必须要调用虚基类的构造函数。对最终的派生类来说,虚基类是间接基类,而不是直接基类。这跟普通继承不同,在普通继承中,派生类构造函数中只能调用直接基类的构造函数,不能调用间接基类的。
下面我们以菱形继承为例来演示构造函数的调用:
#include <iostream>
using namespace std;
//虚基类A
class A{
public:
A(int a);
protected:
int m_a;
};
A::A(int a): m_a(a){ }
//直接派生类B
class B: virtual public A{
public:
B(int a, int b);
public:
void display();
protected:
int m_b;
};
B::B(int a, int b): A(a), m_b(b){ }
void B::display(){
cout<<"m_a="<<m_a<<", m_b="<<m_b<<endl;
}
//直接派生类C
class C: virtual public A{
public:
C(int a, int c);
public:
void display();
protected:
int m_c;
};
C::C(int a, int c): A(a), m_c(c){ }
void C::display(){
cout<<"m_a="<<m_a<<", m_c="<<m_c<<endl;
}
//间接派生类D
class D: public B, public C{
public:
D(int a, int b, int c, int d);
public:
void display();
private:
int m_d;
};
D::D(int a, int b, int c, int d): A(a), B(90, b), C(100, c), m_d(d){ }
void D::display(){
cout<<"m_a="<<m_a<<", m_b="<<m_b<<", m_c="<<m_c<<", m_d="<<m_d<<endl;
}
int main(){
B b(10, 20);
b.display();
C c(30, 40);
c.display();
D d(50, 60, 70, 80);
d.display();
return 0;
}
运行结果:
m_a=10, m_b=20
m_a=30, m_c=40
m_a=50, m_b=60, m_c=70, m_d=80
请注意第 50 行代码,在最终派生类 D 的构造函数中,除了调用 B 和 C 的构造函数,还调用了 A 的构造函数,这说明 D 不但要负责初始化直接基类 B 和 C,还要负责初始化间接基类 A。在以往的普通继承中,派生类的构造函数只负责初始化它的直接基类,再由直接基类的构造函数初始化间接基类,用户尝试调用间接基类的构造函数将导致错误。
现在采用了虚继承,虚基类 A 在最终派生类 D 中只保留了一份成员变量 m_a,如果由 B 和 C 初始化 m_a,那么 B 和 C 在调用 A 的构造函数时很有可能给出不同的实参,这个时候编译器就会犯迷糊,不知道使用哪个实参初始化 m_a。
为了避免出现这种矛盾的情况,C++干脆规定必须由最终的派生类 D 来初始化虚基类 A,直接派生类 B 和 C 对 A 的构造函数的调用是无效的。在第 50 行代码中,调用 B 的构造函数时试图将 m_a 初始化为 90,调用 C 的构造函数时试图将 m_a 初始化为 100,但是输出结果有力地证明了这些都是无效的,m_a 最终被初始化为 50,这正是在 D 中直接调用 A 的构造函数的结果。
另外需要关注的是构造函数的执行顺序。虚继承时构造函数的执行顺序与普通继承时不同:在最终派生类的构造函数调用列表中,不管各个构造函数出现的顺序如何,编译器总是先调用虚基类的构造函数,再按照出现的顺序调用其他的构造函数;而对于普通继承,就是按照构造函数出现的顺序依次调用的。
修改本例中第 50 行代码,改变构造函数出现的顺序:
D::D(int a, int b, int c, int d): B(90, b), C(100, c), A(a), m_d(d){ }
虽然我们将 A() 放在了最后,但是编译器仍然会先调用 A(),然后再调用 B()、C(),因为 A() 是虚基类的构造函数,比其他构造函数优先级高。如果没有使用虚继承的话,那么编译器将按照出现的顺序依次调用 B()、C()、A()。