/*
* Intersil ISL12020M rtc class driver
*
*
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
*/
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/bcd.h>
#include <linux/rtc.h>
#define DRV_NAME "isl12020m"
#define DRV_VERSION "0.2"
/* Register map */
/* rtc section */
#define ISL12020M_REG_SC 0x00
#define ISL12020M_REG_MN 0x01
#define ISL12020M_REG_HR 0x02
#define ISL12020M_REG_HR_MIL (1<<7) /* 24h/12h mode */
#define ISL12020M_REG_HR_PM (1<<5) /* PM/AM bit in 12h mode */
#define ISL12020M_REG_DT 0x03
#define ISL12020M_REG_MO 0x04
#define ISL12020M_REG_YR 0x05
#define ISL12020M_REG_DW 0x06
#define ISL12020M_RTC_SECTION_LEN 7
/* control/status section */
#define ISL12020M_REG_SR 0x07 /* status reg */
#define ISL12020M_REG_SR_DSTADJ (1<<5) /* daylight saving time change */
#define ISL12020M_REG_SR_ALM (1<<4) /* alarm bit ,can only set 0 */
#define ISL12020M_REG_SR_LBAT85 (1<<2) /* low battery indicator 85% */
#define ISL12020M_REG_SR_LBAT75 (1<<1) /* low battery indicator 75% */
#define ISL12020M_REG_SR_RTCF (1<<0) /* real time clock fail */
#define ISL12020M_REG_INT 0x08 /* interrupt control reg */
#define ISL12020M_REG_INT_ARST (1<<7) /* automatic reset */
#define ISL12020M_REG_INT_WRTC (1<<6) /* write rtc enable */
#define ISL12020M_REG_INT_IM (1<<5) /* interrupt/alarm mode */
#define ISL12020M_REG_INT_FOBATB (1<<4) /* frequency output and interrupt */
#define ISL12020M_REG_PWR_VDD 0x09 /* power supply control reg */
#define ISL12020M_REG_PWR_VDD_CLRTS (1<<7) /* clear time stamp VDD to battery and time stamp battery to VDD regs */
#define ISL12020M_REG_PWR_VBAT 0x0A /* battery voltage trip voltage reg */
#define ISL12020M_REG_ITR0 0x0B /* initial AT and DT setting reg */
#define ISL12020M_REG_ALPHA 0x0C /* ALPHA reg ,temperature coefficient */
#define ISL12020M_REG_BETA 0x0D /* BETA reg, */
#define ISL12020M_REG_BETA_TSE (1<<7) /* temperature sensor enable */
#define ISL12020M_REG_FATR 0x0E /* final analog trimming reg */
#define ISL12020M_REG_FDTR 0x0F /* final digital trimming reg */
/* alarm section */
#define ISL12020M_REG_SCA0 0x10 /* second */
#define ISL12020M_REG_MNA0 0x11 /* minute */
#define ISL12020M_REG_HRA0 0x12 /* hour */
#define ISL12020M_REG_DTA0 0x13 /* date */
#define ISL12020M_REG_MOA0 0x14 /* month */
#define ISL12020M_REG_DWA0 0x15 /* day of week */
#define ISL12020M_ALARM_SECTION_LEN 6
/* TSV2B section, time stamp VDD to battery*/
#define ISL12020M_REG_VSC 0x16
#define ISL12020M_REG_VMN 0x17
#define ISL12020M_REG_VHR 0x18
#define ISL12020M_REG_VDT 0x19
#define ISL12020M_REG_VMO 0x1A
/* TSB2V, time stamp battery to VDD */
#define ISL12020M_REG_BSC 0x1B
#define ISL12020M_REG_BMN 0x1C
#define ISL12020M_REG_BHR 0x1D
#define ISL12020M_REG_BDT 0x1E
#define ISL12020M_REG_BMO 0x1F
/* DSTCR, DST control regs */
/* DST begginning time, set forward */
#define ISL12020M_REG_DSTMOFD 0x20
#define ISL12020M_REG_DSTMOFD_DSTE (1<<7) /* dst enable bit */
#define ISL12020M_REG_DSTDWFD 0x21
#define ISL12020M_REG_DSTDWFD_DSTDWFDE (1<<6 ) /* set the priority of the day/week over the date */
#define ISL12020M_REG_DSTDTFD 0x22
#define ISL12020M_REG_DSTHRFD 0x23
/* DST ending time, set backward or reverse */
#define ISL12020M_REG_DSTMORV 0x24
#define ISL12020M_REG_DSTDWRV 0x25
#define ISL12020M_REG_DSTDWRV_DSTDWRVE (1<<6) /* set the priority of the day/week over the date */
#define ISL12020M_REG_DSTDTRV 0x26
#define ISL12020M_REG_DSTHRRV 0x27
/* temperature regs*/
#define ISL12020M_REG_TK0L 0x28 /*LSB 8 bit*/
#define ISL12020M_REG_TK0M 0x29 /* MSB 2 bit */
/* NPPM */
#define ISL12020M_REG_NPPML 0x2A
#define ISL12020M_REG_NPPMH 0x2B
/* XT0 regs */
#define ISL12020M_REG_XT0 0x2C
/* ALPHA hot reg */
#define ISL12020M_REG_ALPHAH 0x2D
/* GPM section ,general purpose user sram */
#define ISL12020M_REG_GPM1 0x2E
#define ISL12020M_REG_GPM2 0x2F
#define ISL12020M_GPM_SECTION_LEN 2
/* i2c configuration */
#define ISL12020M_I2C_ADDR 0xde /* 1101 1110*/
static unsigned short normal_i2c[] = {
ISL12020M_I2C_ADDR>>1, I2C_CLIENT_END
};
I2C_CLIENT_INSMOD; /* defines addr_data */
static int isl12020m_attach_adapter(struct i2c_adapter *adapter);
static int isl12020m_detach_client(struct i2c_client *client);
static struct i2c_driver isl12020m_driver = {
.driver = {
.name = DRV_NAME,
},
.id = I2C_DRIVERID_ISL12020M,
.attach_adapter = &isl12020m_attach_adapter,
.detach_client = &isl12020m_detach_client,
};
/* block read */
static int
isl12020m_i2c_read_regs(struct i2c_client *client, u8 reg, u8 buf[],
unsigned len)
{
u8 reg_addr[1] = { reg };
struct i2c_msg msgs[2] = {
{ client->addr, client->flags, sizeof(reg_addr), reg_addr },
{ client->addr, client->flags | I2C_M_RD, len, buf }
};
int ret;
BUG_ON(len == 0);
BUG_ON(reg > ISL12020M_REG_GPM2);
BUG_ON(reg + len > ISL12020M_REG_GPM2 + 1);
ret = i2c_transfer(client->adapter, msgs, 2);
if (ret > 0)
ret = 0;
return ret;
}
/* block write */
static int
isl12020m_i2c_set_regs(struct i2c_client *client, u8 reg, u8 const buf[],
unsigned len)
{
u8 i2c_buf[ISL12020M_REG_GPM2 + 2];
struct i2c_msg msgs[1] = {
{ client->addr, client->flags, len + 1, i2c_buf }
};
int ret;
BUG_ON(len == 0);
BUG_ON(reg > ISL12020M_REG_GPM2);
BUG_ON(reg + len > ISL12020M_REG_GPM2 + 1);
i2c_buf[0] = reg;
memcpy(&i2c_buf[1], &buf[0], len);
ret = i2c_transfer(client->adapter, msgs, 1);
if (ret > 0)
ret = 0;
return ret;
}
/* simple check to see wether we have a isl12020m */
static int isl12020m_i2c_validate_client(struct i2c_client *client)
{
u8 regs[ISL12020M_RTC_SECTION_LEN] = { 0, };
u8 zero_mask[ISL12020M_RTC_SECTION_LEN] = {
0x80, 0x80, 0x40, 0xc0, 0xe0, 0x00, 0xf8 //1000 = 8
};
int i;
int ret;
ret = isl12020m_i2c_read_regs(client, 0, regs, ISL12020M_RTC_SECTION_LEN);
if (ret < 0)
return ret;
for (i = 0; i < ISL12020M_RTC_SECTION_LEN; ++i) {
if (regs[i] & zero_mask[i]) /* check if bits are cleared */
return -ENODEV;
}
return 0;
}
static int isl12020m_i2c_get_sr(struct i2c_client *client)
{
return i2c_smbus_read_byte_data(client, ISL12020M_REG_SR) == -1 ? -EIO:0;
}
static int isl12020m_i2c_get_fatr(struct i2c_client *client)
{
int fatr = i2c_smbus_read_byte_data(client, ISL12020M_REG_FATR);
if (fatr < 0)
return -EIO;
/* The 6bit value in the ATR register controls the load
* capacitance C_load * in steps of 0.25pF
*
* bit (1<<5) of the ATR register is inverted
*
* C_load(ATR=0x20) = 4.50pF
* C_load(ATR=0x00) = 12.50pF
* C_load(ATR=0x1f) = 20.25pF
*
*/
fatr &= 0x3f; /* mask out lsb */
fatr ^= 1<<5; /* invert 6th bit */
fatr += 2*9; /* add offset of 4.5pF; unit[atr] = 0.25pF */
return fatr;
}
static int isl12020m_i2c_get_fdtr(struct i2c_client *client)
{
int fdtr = i2c_smbus_read_byte_data(client, ISL12020M_REG_FDTR);
if (fdtr < 0)
return -EIO;
/* dtr encodes adjustments of {-60,-40,-20,0,20,40,60} ppm */
fdtr = ((fdtr & 0x3) * 20) * (fdtr & (1<<2) ? -1 : 1);
return fdtr;
}
static int isl12020m_i2c_get_gpm(struct i2c_client *client)
{
u8 buf[ISL12020M_GPM_SECTION_LEN] = { 0, };
int ret;
ret = isl12020m_i2c_read_regs (client, ISL12020M_REG_GPM1, buf,
ISL12020M_GPM_SECTION_LEN);
if (ret < 0)
return ret;
return (buf[1] << 8) | buf[0];
}
static int isl12020m_i2c_set_gpm(struct i2c_client *client, u16 usr)
{
u8 buf[ISL12020M_GPM_SECTION_LEN];
buf[0] = usr & 0xff;
buf[1] = (usr >> 8) & 0xff;
return isl12020m_i2c_set_regs (client, ISL12020M_REG_GPM1, buf,
ISL12020M_GPM_SECTION_LEN);
}
static int isl12020m_rtc_proc(struct device *dev, struct seq_file *seq)
{
struct i2c_client *const client = to_i2c_client(dev);
int sr, fdtr, fatr, usr;
sr = isl12020m_i2c_get_sr(client);
if (sr < 0) {
dev_err(&client->dev, "%s: reading SR failed\n", __func__);
return sr;
}
seq_printf(seq, "status_reg\t:%s%s (0x%.2x)\n", //%s%s%s%s get out
(sr & ISL12020M_REG_SR_RTCF) ? " RTCF" : "",
// (sr & ISL12020M_REG_SR_BAT) ? " BAT" : "",
(sr & ISL12020M_REG_SR_ALM) ? " ALM" : "",
// (sr & ISL12020M_REG_SR_WRTC) ? " WRTC" : "",
// (sr & ISL12020M_REG_SR_XTOSCB) ? " XTOSCB" : "",
// (sr & ISL12020M_REG_SR_ARST) ? " ARST" : "",
sr);
seq_printf(seq, "batt_status\t: %s\n",
(sr & ISL12020M_REG_SR_RTCF) ? "bad" : "okay");
fdtr = isl12020m_i2c_get_fdtr(client);
if (fdtr >= 0 -1)
seq_printf(seq, "digital_trim\t: %d ppm\n", fdtr);
fatr = isl12020m_i2c_get_fatr(client);
if (fatr >= 0)
seq_printf(seq, "analog_trim\t: %d.%.2d pF\n",
fatr>>2, (fatr&0x3)*25);
usr = isl12020m_i2c_get_gpm(client);
if (usr >= 0)
seq_printf(seq, "user_data\t: 0x%.4x\n", usr);
return 0;
}
static int isl12020m_i2c_read_time(struct i2c_client *client,
struct rtc_time *tm)
{
int sr;
u8 regs[ISL12020M_RTC_SECTION_LEN] = { 0, };
sr = isl12020m_i2c_get_sr(client);
if (sr < 0) {
dev_err(&client->dev, "%s: reading SR failed\n", __func__);
return -EIO;
}
sr = isl12020m_i2c_read_regs(client, 0, regs, ISL12020M_RTC_SECTION_LEN);
if (sr < 0) {
dev_err(&client->dev, "%s: reading RTC section failed\n",
__func__);
return sr;
}
tm->tm_sec = BCD2BIN(regs[ISL12020M_REG_SC]);
tm->tm_min = BCD2BIN(regs[ISL12020M_REG_MN]);
{ /* HR field has a more complex interpretation */
const u8 _hr = regs[ISL12020M_REG_HR];
if (_hr & ISL12020M_REG_HR_MIL) /* 24h format */
tm->tm_hour = BCD2BIN(_hr & 0x3f);
else { // 12h format
tm->tm_hour = BCD2BIN(_hr & 0x1f);
if (_hr & ISL12020M_REG_HR_PM) /* PM flag set */
tm->tm_hour += 12;
}
}
tm->tm_mday = BCD2BIN(regs[ISL12020M_REG_DT]);
tm->tm_mon = BCD2BIN(regs[ISL12020M_REG_MO]) - 1; /* rtc starts at 1 */
tm->tm_year = BCD2BIN(regs[ISL12020M_REG_YR]) + 100;
tm->tm_wday = BCD2BIN(regs[ISL12020M_REG_DW]);
return 0;
}
static int isl12020m_i2c_read_alarm(struct i2c_client *client,
struct rtc_wkalrm *alarm)
{
struct rtc_time *const tm = &alarm->time;
u8 regs[ISL12020M_ALARM_SECTION_LEN] = { 0, };
int sr;
sr = isl12020m_i2c_get_sr(client);
if (sr < 0) {
dev_err(&client->dev, "%s: reading SR failed\n", __func__);
return sr;
}
sr = isl12020m_i2c_read_regs(client, ISL12020M_REG_SCA0, regs,
ISL12020M_ALARM_SECTION_LEN);
if (sr < 0) {
dev_err(&client->dev, "%s: reading alarm section failed\n",
__func__);
return sr;
}
/* MSB of each alarm register is an enable bit */
tm->tm_sec = BCD2BIN(regs[ISL12020M_REG_SCA0-ISL12020M_REG_SCA0] & 0x7f);
tm->tm_min = BCD2BIN(regs[ISL12020M_REG_MNA0-ISL12020M_REG_SCA0] & 0x7f);
tm->tm_hour = BCD2BIN(regs[ISL12020M_REG_HRA0-ISL12020M_REG_SCA0] & 0x3f);
tm->tm_mday = BCD2BIN(regs[ISL12020M_REG_DTA0-ISL12020M_REG_SCA0] & 0x3f);
tm->tm_mon = BCD2BIN(regs[ISL12020M_REG_MOA0-ISL12020M_REG_SCA0] & 0x1f)-1;
tm->tm_wday = BCD2BIN(regs[ISL12020M_REG_DWA0-ISL12020M_REG_SCA0] & 0x03);
return 0;
}
static int isl12020m_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
return isl12020m_i2c_read_time(to_i2c_client(dev), tm);
}
static int isl12020m_i2c_set_time(struct i2c_client *client,
struct rtc_time const *tm)
{
int sr;
u8 regs[ISL12020M_RTC_SECTION_LEN] = { 0, };
regs[ISL12020M_REG_SC] = BIN2BCD(tm->tm_sec);
regs[ISL12020M_REG_MN] = BIN2BCD(tm->tm_min);
regs[ISL12020M_REG_HR] = BIN2BCD(tm->tm_hour) | ISL12020M_REG_HR_MIL;
regs[ISL12020M_REG_DT] = BIN2BCD(tm->tm_mday);
regs[ISL12020M_REG_MO] = BIN2BCD(tm->tm_mon + 1);
regs[ISL12020M_REG_YR] = BIN2BCD(tm->tm_year - 100);
regs[ISL12020M_REG_DW] = BIN2BCD(tm->tm_wday & 7);
sr = isl12020m_i2c_get_sr(client);
if (sr < 0) {
dev_err(&client->dev, "%s: reading SR failed\n", __func__);
return sr;
}
/* set WRTC */
sr = i2c_smbus_write_byte_data (client, ISL12020M_REG_SR,
sr | ISL12020M_REG_INT_WRTC);
if (sr < 0) {
dev_err(&client->dev, "%s: writing SR failed\n", __func__);
return sr;
}
/* write RTC registers */
sr = isl12020m_i2c_set_regs(client, 0, regs, ISL12020M_RTC_SECTION_LEN);
if (sr < 0) {
dev_err(&client->dev, "%s: writing RTC section failed\n",
__func__);
return sr;
}
/* clear WRTC again */
sr = i2c_smbus_write_byte_data (client, ISL12020M_REG_SR,
sr & ~ISL12020M_REG_INT_WRTC);
if (sr < 0) {
dev_err(&client->dev, "%s: writing SR failed\n", __func__);
return sr;
}
return 0;
}
static int isl12020m_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
return isl12020m_i2c_set_time(to_i2c_client(dev), tm);
}
static int isl12020m_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{
return isl12020m_i2c_read_alarm(to_i2c_client(dev), alarm);
}
static const struct rtc_class_ops isl12020m_rtc_ops = {
.proc = isl12020m_rtc_proc,
.read_time = isl12020m_rtc_read_time,
.set_time = isl12020m_rtc_set_time,
.read_alarm = isl12020m_rtc_read_alarm,
//.set_alarm = isl1208_rtc_set_alarm,
};
/* sysfs interface */
static ssize_t isl12020m_sysfs_show_atrim(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int fatr;
fatr = isl12020m_i2c_get_fatr(to_i2c_client(dev));
if (fatr < 0)
return fatr;
return sprintf(buf, "%d.%.2d pF\n", fatr>>2, (fatr&0x3)*25);
}
static DEVICE_ATTR(atrim, S_IRUGO, isl12020m_sysfs_show_atrim, NULL);
static ssize_t isl12020m_sysfs_show_dtrim(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int fdtr;
fdtr = isl12020m_i2c_get_fdtr(to_i2c_client(dev));
if (fdtr < 0)
return fdtr;
return sprintf(buf, "%d ppm\n", fdtr);
}
static DEVICE_ATTR(dtrim, S_IRUGO, isl12020m_sysfs_show_dtrim, NULL);
static ssize_t isl12020m_sysfs_show_usr(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int usr;
usr = isl12020m_i2c_get_gpm(to_i2c_client(dev));
if (usr < 0)
return usr;
return sprintf(buf, "0x%.4x\n", usr);
}
static ssize_t isl12020m_sysfs_store_usr(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int usr = -1;
if (buf[0] == '0' && (buf[1] == 'x' || buf[1] == 'X')) {
if (sscanf(buf, "%x", &usr) != 1)
return -EINVAL;
} else {
if (sscanf(buf, "%d", &usr) != 1)
return -EINVAL;
}
if (usr < 0 || usr > 0xffff)
return -EINVAL;
return isl12020m_i2c_set_gpm(to_i2c_client(dev), usr) ? -EIO : count;
}
static DEVICE_ATTR(usr, S_IRUGO | S_IWUSR, isl12020m_sysfs_show_usr,
isl12020m_sysfs_store_usr);
static int
isl12020m_probe(struct i2c_adapter *adapter, int addr, int kind)
{
int rc = 0;
struct i2c_client *new_client = NULL;
struct rtc_device *rtc = NULL;
if (!i2c_check_functionality(adapter, I2C_FUNC_I2C)) {
rc = -ENODEV;
goto failout;
}
new_client = kzalloc(sizeof(struct i2c_client), GFP_KERNEL);
if (new_client == NULL) {
rc = -ENOMEM;
goto failout;
}
new_client->addr = addr;
new_client->adapter = adapter;
new_client->driver = &isl12020m_driver;
new_client->flags = 0;
strcpy(new_client->name, DRV_NAME);
if (kind < 0) {
rc = isl12020m_i2c_validate_client(new_client);
if (rc < 0)
goto failout;
}
rc = i2c_attach_client(new_client);
if (rc < 0)
goto failout;
dev_info(&new_client->dev,
"chip found, driver version " DRV_VERSION "\n");
rtc = rtc_device_register(isl12020m_driver.driver.name,
&new_client->dev,
&isl12020m_rtc_ops, THIS_MODULE);
if (IS_ERR(rtc)) {
rc = PTR_ERR(rtc);
goto failout_detach;
}
i2c_set_clientdata(new_client, rtc);
rc = isl12020m_i2c_get_sr(new_client);
if (rc < 0) {
dev_err(&new_client->dev, "reading status failed\n");
goto failout_unregister;
}
if (rc & ISL12020M_REG_SR_RTCF)
dev_warn(&new_client->dev, "rtc power failure detected, "
"please set clock.\n");
rc = device_create_file(&new_client->dev, &dev_attr_atrim);
if (rc < 0)
goto failout_unregister;
rc = device_create_file(&new_client->dev, &dev_attr_dtrim);
if (rc < 0)
goto failout_atrim;
rc = device_create_file(&new_client->dev, &dev_attr_usr);
if (rc < 0)
goto failout_dtrim;
return 0;
failout_dtrim:
device_remove_file(&new_client->dev, &dev_attr_dtrim);
failout_atrim:
device_remove_file(&new_client->dev, &dev_attr_atrim);
failout_unregister:
rtc_device_unregister(rtc);
failout_detach:
i2c_detach_client(new_client);
failout:
kfree(new_client);
return rc;
}
static int
isl12020m_attach_adapter (struct i2c_adapter *adapter)
{
return i2c_probe(adapter, &addr_data, isl12020m_probe);
}
static int
isl12020m_detach_client(struct i2c_client *client)
{
int rc;
struct rtc_device *const rtc = i2c_get_clientdata(client);
if (rtc)
rtc_device_unregister(rtc); /* do we need to kfree? */
rc = i2c_detach_client(client);
if (rc)
return rc;
kfree(client);
return 0;
}
/* module management */
static int __init isl12020m_init(void)
{
return i2c_add_driver(&isl12020m_driver);
}
static void __exit isl12020m_exit(void)
{
i2c_del_driver(&isl12020m_driver);
}
MODULE_AUTHOR("Herbert Valerio Riedel <hvr@gnu.org>");
MODULE_DESCRIPTION("Intersil ISL12020M RTC driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
module_init(isl12020m_init);
module_exit(isl12020m_exit);