tools/train_net.py
#!/usr/bin/env python
# --------------------------------------------------------
# Fast R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------
"""Train a Fast R-CNN network on a region of interest database."""
import _init_paths
from fast_rcnn.train import get_training_roidb, train_net
from fast_rcnn.config import cfg, cfg_from_file, cfg_from_list, get_output_dir
from datasets.factory import get_imdb
import datasets.imdb
import caffe
import argparse
import pprint
import numpy as np
import sys
def parse_args():#运行时命令行参数
"""
Parse input arguments
"""
parser = argparse.ArgumentParser(description='Train a Fast R-CNN network')
parser.add_argument('--gpu', dest='gpu_id',
help='GPU device id to use [0]',
default=0, type=int)
parser.add_argument('--solver', dest='solver',
help='solver prototxt',
default=None, type=str)
parser.add_argument('--iters', dest='max_iters',
help='number of iterations to train',
default=40000, type=int)
parser.add_argument('--weights', dest='pretrained_model',
help='initialize with pretrained model weights',
default=None, type=str)
parser.add_argument('--cfg', dest='cfg_file',
help='optional config file',
default=None, type=str)
parser.add_argument('--imdb', dest='imdb_name',
help='dataset to train on',
default='voc_2007_trainval', type=str)
parser.add_argument('--rand', dest='randomize',
help='randomize (do not use a fixed seed)',
action='store_true')
parser.add_argument('--set', dest='set_cfgs',
help='set config keys', default=None,
nargs=argparse.REMAINDER)
if len(sys.argv) == 1: #判断命令行参数,如果没有参数,提示错误并退出
parser.print_help()
sys.exit(1)
args = parser.parse_args()
return args
def combined_roidb(imdb_names):
#融合roidb,roidb来自于数据集(实验时可能用到多个),所以需要combine多个数据集的roidb
def get_roidb(imdb_name):#得到roidb
imdb = get_imdb(imdb_name)
print 'Loaded dataset `{:s}` for training'.format(imdb.name)
imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD)
#设置proposal方法,__C.TRAIN.PROPOSAL_METHOD = 'gt'
print 'Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD)
roidb = get_training_roidb(imdb)
# 得到用于训练的roidb,定义在train.py,进行了水平翻转,以及为原始roidb添加了一些说明性的属性
return roidb
roidbs = [get_roidb(s) for s in imdb_names.split('+')]
roidb = roidbs[0]
if len(roidbs) > 1:
for r in roidbs[1:]: # 这里进行combine roidb
roidb.extend(r)
imdb = datasets.imdb.imdb(imdb_names)
else:
imdb = get_imdb(imdb_names)
return imdb, roidb
if __name__ == '__main__':
args = parse_args()
print('Called with args:')
print(args)
if args.cfg_file is not None:#如果还有其他配置文件,则加载
cfg_from_file(args.cfg_file)
if args.set_cfgs is not None:
cfg_from_list(args.set_cfgs)
cfg.GPU_ID = args.gpu_id
print('Using config:')#使用pprint标准打印出当前配置文件
pprint.pprint(cfg)
if not args.randomize:
# fix the random seeds (numpy and caffe) for reproducibility固定seed,为了可重复性
np.random.seed(cfg.RNG_SEED) #__C.RNG_SEED = 3 for numpy
caffe.set_random_seed(cfg.RNG_SEED) #__C.RNG_SEED = 3 for caffe
# set up caffe
caffe.set_mode_gpu()
caffe.set_device(args.gpu_id)
imdb, roidb = combined_roidb(args.imdb_name)
print '{:d} roidb entries'.format(len(roidb))#获得输入roidb数量
output_dir = get_output_dir(imdb)#输出路径
print 'Output will be saved to `{:s}`'.format(output_dir)
train_net(args.solver, roidb, output_dir, #Train a Fast R-CNN network
pretrained_model=args.pretrained_model,
max_iters=args.max_iters)