source folder 顺序

本文介绍了一种简单的方法来调整Eclipse中项目的源文件夹排序,确保test文件夹位于main文件夹之上,这对于依赖特定文件夹顺序的项目非常重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

习惯了 test 在上面  而main 在下面的排序

 

那么如果source folder 不是按这个顺序排列的那该怎么办?

 

so easy

 

右键项目 - > Properties  (或者 Alt + Enter)

 

选择 java build path -> Order and Exprot

 

OK

 

import os, shutil from sklearn.model_selection import train_test_split val_size = 0.2 #test_size = 0.2 postfix = 'jpg' imgpath = r'E:\A-毕业设计代做数据\datasets\images' txtpath = r'E:\A-毕业设计代做数据\datasets\labels' output_train_img_folder =r'E:\A-毕业设计代做数据\datasets\dataset_kengwa/images/train' output_val_img_folder = r'E:\A-毕业设计代做数据\datasets\dataset_kengwa/images/val' output_train_txt_folder = r'E:\A-毕业设计代做数据\datasets\dataset_kengwa\labels/train' output_val_txt_folder = r'E:\A-毕业设计代做数据\datasets\dataset_kengwa\labels/val' os.makedirs(output_train_img_folder, exist_ok=True) os.makedirs(output_val_img_folder, exist_ok=True) os.makedirs(output_train_txt_folder, exist_ok=True) os.makedirs(output_val_txt_folder, exist_ok=True) listdir = [i for i in os.listdir(txtpath) if 'txt' in i] train, val = train_test_split(listdir, test_size=val_size, shuffle=True, random_state=0) #todo:需要test放开 # train, test = train_test_split(listdir, test_size=test_size, shuffle=True, random_state=0) # train, val = train_test_split(train, test_size=val_size, shuffle=True, random_state=0) for i in train: img_source_path = os.path.join(imgpath, '{}.{}'.format(i[:-4], postfix)) txt_source_path = os.path.join(txtpath, i) img_destination_path = os.path.join(output_train_img_folder, '{}.{}'.format(i[:-4], postfix)) txt_destination_path = os.path.join(output_train_txt_folder, i) shutil.copy(img_source_path, img_destination_path) shutil.copy(txt_source_path, txt_destination_path) for i in val: img_source_path = os.path.join(imgpath, '{}.{}'.format(i[:-4], postfix)) txt_source_path = os.path.join(txtpath, i) img_destination_path = os.path.join(output_val_img_folder, '{}.{}'.format(i[:-4], postfix)) txt_destination_path = os.path.join(output_val_txt_folder, i) shutil.copy(img_source_path, img_destination_path) shutil.copy(txt_source_path, txt_destination_path) # # for i in train: # shutil.copy('{}/{}.{}'.format(imgpath, i[:-4], postfix), r'E:\1
03-28
import os, shutil from sklearn.model_selection import train_test_split val_size = 0.2 #test_size = 0.2 postfix = 'jpg' imgpath = r'D:\yolov10-main\RXdata\images' txtpath = r'D:\yolov10-main\RXdata\labels' output_train_img_folder =r'D:\yolov10-main\RXdata\dataset_kengwa/images/train' output_val_img_folder = r'D:\yolov10-main\RXdata\dataset_kengwa/images/val' output_train_txt_folder = r'D:\yolov10-main\RXdata\dataset_kengwa\labels/train' output_val_txt_folder = r'E:D:\yolov10-main\RXdata\dataset_kengwa\labels/val' os.makedirs(output_train_img_folder, exist_ok=True) os.makedirs(output_val_img_folder, exist_ok=True) os.makedirs(output_train_txt_folder, exist_ok=True) os.makedirs(output_val_txt_folder, exist_ok=True) listdir = [i for i in os.listdir(txtpath) if 'txt' in i] train, val = train_test_split(listdir, test_size=val_size, shuffle=True, random_state=0) #todo:需要test放开 # train, test = train_test_split(listdir, test_size=test_size, shuffle=True, random_state=0) # train, val = train_test_split(train, test_size=val_size, shuffle=True, random_state=0) for i in train: img_source_path = os.path.join(imgpath, '{}.{}'.format(i[:-4], postfix)) txt_source_path = os.path.join(txtpath, i) img_destination_path = os.path.join(output_train_img_folder, '{}.{}'.format(i[:-4], postfix)) txt_destination_path = os.path.join(output_train_txt_folder, i) shutil.copy(img_source_path, img_destination_path) shutil.copy(txt_source_path, txt_destination_path) for i in val: img_source_path = os.path.join(imgpath, '{}.{}'.format(i[:-4], postfix)) txt_source_path = os.path.join(txtpath, i) img_destination_path = os.path.join(output_val_img_folder, '{}.{}'.format(i[:-4], postfix)) txt_destination_path = os.path.join(output_val_txt_folder, i) shutil.copy(img_source_path, img_destination_path) shutil.copy(txt_source_path, txt_destination_path) # # for i in train: # shutil.copy('{}/{}.{}'.format(imgpath, i[:-4], postfix), r'E:
03-28
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值