tensorflow2.9+CUDA11.2+cuDNN8.1 环境配置详细使用教程

花了几周整理出来的资料避免踩坑,有AI领域的小伙伴欢迎一起交流+微+L1356414643,有合适的"机会",欢迎各大厂大佬可以相互学习交流.

Anaconda环境配置相关

一、程序下载 

Unleash AI Innovation and Value | Anaconda 直接安装即可

二、环境变量配置

打开电脑中的环境变量(如何配置环境变量:打开环境变量)

Path中依次添加如下变量(C:\ProgramData 更换承Anaconda3的安装目录)

注:环境变量是从上往下找的想在命令窗口优先调用所需环境可将其往上移动 1 C:\ProgramData\Anaconda3 # python所在

C:\ProgramData\Anaconda3\Scripts #相关脚本所在

C:\ProgramData\Anaconda3\Library\bin

C:\ProgramData\Anaconda3\Library\mingw-w64\bin

三、常用命令

conda --version #conda版本查看

conda update conda #升级当前版本的conda

conda create -n 你喜欢的名字 python=x.x #(python环境和其他需要安装的包可选安装)创建一个虚拟环境

codna activete name #name是环境名 激活该名称的环境

#查看当前环境 conda env list conda info -e

#查看和管理包 conda list conda install

四.在conda环境中安装tensorflow和cuda

 安装实际例程

conda create -n tf26 python=3.9

在环境中安装

tensorflow pip install tensorflow-gpu==2.9

在环境中安装tensorflow对应版本的cuda conda install cudatoolkit=11.2 cudnn -c conda-forge

conda install -c conda-forge cudnn=8.1.0

五、对应关系 cuDNN官网下载地址,CUDA 工具包下载地址

cuDNN Archive | NVIDIA Developer

CUDA Toolkit Archive | NVIDIA Developer

官网可查对应关系cuDNN,CUDA,Tensorflow 对应版本:

Build from source on Windows  |  TensorFlow

利用anaconda安装 可以看到,tensorflow2.9对应的CUDA版本是11.2,cuDNN版本是8.1

先安装cudatookit conda install -c conda-forge cudatoolkit=11.2

后安装cudnn conda install -c conda-forge cudnn=8.1.0

最后安装tensorflow pip install tensorflow-gpu==2.9.0

import tensorflow as tf tf.test.is_gpu_available()

自编译tensorflow1.python3.5,tensorflow1.12; 2.支持cuda10.0,cudnn7.3.1,TensorRT-5.0.2.6-cuda10.0-cudnn7.3; 3.支持mkl,无MPI; 软硬件硬件环境:Ubuntu16.04,GeForce GTX 1080 配置信息: hp@dla:~/work/ts_compile/tensorflow$ ./configure WARNING: --batch mode is deprecated. Please instead explicitly shut down your Bazel server using the command "bazel shutdown". You have bazel 0.19.1 installed. Please specify the location of python. [Default is /usr/bin/python]: /usr/bin/python3 Found possible Python library paths: /usr/local/lib/python3.5/dist-packages /usr/lib/python3/dist-packages Please input the desired Python library path to use. Default is [/usr/local/lib/python3.5/dist-packages] Do you wish to build TensorFlow with XLA JIT support? [Y/n]: XLA JIT support will be enabled for TensorFlow. Do you wish to build TensorFlow with OpenCL SYCL support? [y/N]: No OpenCL SYCL support will be enabled for TensorFlow. Do you wish to build TensorFlow with ROCm support? [y/N]: No ROCm support will be enabled for TensorFlow. Do you wish to build TensorFlow with CUDA support? [y/N]: y CUDA support will be enabled for TensorFlow. Please specify the CUDA SDK version you want to use. [Leave empty to default to CUDA 10.0]: Please specify the location where CUDA 10.0 toolkit is installed. Refer to README.md for more details. [Default is /usr/local/cuda]: /usr/local/cuda-10.0 Please specify the cuDNN version you want to use. [Leave empty to default to cuDNN 7]: 7.3.1 Please specify the location where cuDNN 7 library is installed. Refer to README.md for more details. [Default is /usr/local/cuda-10.0]: Do you wish to build TensorFlow with TensorRT support? [y/N]: y TensorRT support will be enabled for TensorFlow. Please specify the location where TensorRT is installed. [Default is /usr/lib/x86_64-linux-gnu]:/home/hp/bin/TensorRT-5.0.2.6-cuda10.0-cudnn7.3/targets/x86_64-linux-gnu Please specify the locally installed NCCL version you want to use. [Default is to use https://github.com/nvidia/nccl]: Please specify a list of comma-separated Cuda compute capabilities you want to build with. You can find the compute capability of your device at: https://developer.nvidia.com/cuda-gpus. Please note that each additional compute capability significantly increases your build time and binary size. [Default is: 6.1,6.1,6.1]: Do you want to use clang as CUDA compiler? [y/N]: nvcc will be used as CUDA compiler. Please specify which gcc should be used by nvcc as the host compiler. [Default is /usr/bin/gcc]: Do you wish to build TensorFlow with MPI support? [y/N]: No MPI support will be enabled for TensorFlow. Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is -march=native -Wno-sign-compare]: Would you like to interactively configure ./WORKSPACE for Android builds? [y/N]: Not configuring the WORKSPACE for Android builds. Preconfigured Bazel build configs. You can use any of the below by adding "--config=" to your build command. See .bazelrc for more details. --config=mkl # Build with MKL support. --config=monolithic # Config for mostly static monolithic build. --config=gdr # Build with GDR support. --config=verbs # Build with libverbs support. --config=ngraph # Build with Intel nGraph support. --config=dynamic_kernels # (Experimental) Build kernels into separate shared objects. Preconfigured Bazel build configs to DISABLE default on features: --config=noaws # Disable AWS S3 filesystem support. --config=nogcp # Disable GCP support. --config=nohdfs # Disable HDFS support. --config=noignite # Disable Apacha Ignite support. --config=nokafka # Disable Apache Kafka support. --config=nonccl # Disable NVIDIA NCCL support. Configuration finished 编译: hp@dla:~/work/ts_compile/tensorflow$ bazel build --config=opt --config=mkl --verbose_failures //tensorflow/tools/pip_package:build_pip_package 卸载已有tensorflow: hp@dla:~/temp$ sudo pip3 uninstall tensorflow 安装自己编译的成果: hp@dla:~/temp$ sudo pip3 install tensorflow-1.12.0-cp35-cp35m-linux_x86_64.whl
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值