【完整源码+数据集】花卉数据集,yolov8花卉分类检测数据集 5758 张,花品种分类识别数据集,花卉分类识别系统实战教程

开源AI·十一月创作之星挑战赛 10w+人浏览 556人参与

文章前瞻:优质数据集与检测系统精选

点击链接:更多数据集与系统目录清单

数据集与检测系统数据集与检测系统
基于深度学习的道路积水检测系统基于深度学习的道路垃圾检测系统
基于深度学习的道路裂缝检测系统基于深度学习的道路交通事故检测系统
基于深度学习的道路病害检测系统基于深度学习的道路积雪结冰检测系统
基于深度学习的汽车车牌检测系统基于深度学习的井盖丢失破损检测系统
基于深度学习的行人车辆检测系统基于深度学习的航拍行人检测系统
基于深度学习的车辆分类检测系统基于深度学习的电动车头盔佩戴检测系统
基于深度学习的交通信号灯检测系统基于深度学习的共享单车违停检测系统
基于深度学习的摆摊占道经营检测系统基于深度学习的人员游泳溺水检测系统
基于深度学习的航拍水面垃圾检测系统基于深度学习的水面垃圾检测系统
基于深度学习的水面船舶分类检测系统基于深度学习的海洋垃圾检测系统
基于深度学习的救生衣穿戴检测系统基于深度学习的海洋生物检测系统
基于深度学习的人员吸烟检测系统基于深度学习的口罩佩戴检测系统
基于深度学习的烟雾和火灾检测系统基于深度学习的人员睡岗玩手机检测系统
基于深度学习的人员摔倒检测系统基于深度学习的人员姿势检测系统(站坐躺摔倒)
基于深度学习的工地安全穿戴检测系统基于深度学习的安全帽检测系统
基于深度学习的反光背心穿戴检测系统基于深度学习的吸烟玩手机行为检测系统
基于深度学习的武器刀具检测系统基于深度学习的工地工程车检测系统
基于深度学习的人体手势检测系统基于深度学习的消防灭火器检测系统
基于深度学习的人员高空作业检测系统基于深度学习的水果分类检测系统
基于深度学习的农作物病害检测系统基于深度学习的水稻病害检测系统
基于深度学习的害虫检测系统基于深度学习的蓝莓成熟度检测系统
基于深度学习的草莓成熟度检测系统基于深度学习的食品分类检测系统
基于深度学习的光伏板缺陷检测系统基于深度学习的航拍光伏板检测系统
基于深度学习的建筑垃圾废料检测系统基于深度学习的可回收/不可回收垃圾检测系统
基于深度学习的垃圾分类检测系统基于深度学习的猪只行为动作检测系统
基于深度学习的动物分类检测系统基于深度学习的明厨亮灶鼠患检测系统
基于深度学习的猫狗分类检测系统基于深度学习的服饰分类检测系统
基于深度学习的家具分类检测系统基于深度学习的学生课堂行为检测系统
基于深度学习的树木倒塌检测系统基于深度学习的电线杆杂物检测系

一、花卉分类识别数据集介绍

【数据集】yolov8花卉分类检测数据集 5758 张,目标检测,包含YOLO/VOC格式标注,训练、验证、测试集已划分

数据集中标签包含15种分类names: ['daisy', 'dandelion', 'Rose', 'sunflower', 'champaka', 'chitrak', 'Common_Lanthana', 'Hibiscus', 'honeysuckle', 'indian_mallow', 'Jatropha', 'malabar_melastome', 'Marigold', 'shankupushpam', 'spider_lily'],代表雏菊,蒲公英,玫瑰,向日葵,黄兰,查特克花,马缨丹,木槿,金银花,苘麻,麻风树,野牡丹,菊花,茉莉,兰花

检测场景为野外花丛、植物园、公园、植物研究所、花圃等场景,可用于园艺种植精准管理、花卉市场高效分拣、生态科研与保护、文旅与科普赋能等。

文章底部名片或主页私信获取数据集和系统~

1、数据概述

花品种分类识别的重要性

花卉是园艺产业、生态科研与文旅经济的重要载体,其精准分类直接关系品种培育、品质管控与资源保护。传统花卉分类依赖人工凭借花瓣形态、花色等特征判断,存在明显短板:相似品种(如月季与蔷薇、牡丹与芍药)易因外观接近被误判;大规模花卉种植基地或花卉市场中,人工分类效率低下,难以适配批量处理需求;野外花卉普查时,人工难以覆盖偏远区域,且对稀有、濒危品种的识别与记录滞后,影响保护工作开展。

YOLO算法以“实时分类+精准识别”为核心优势,破解上述难题:其一,可通过摄像头、无人机等设备快速捕捉花卉图像,实现高帧率实时分类,无需人工逐株甄别;其二,能精准提取花卉纹理、花瓣结构等细微特征,有效区分形态相似的品种,避免主观误判;其三,适配温室、野外、市场等多场景,可覆盖大规模种植区或偏远生态区域,推动花卉分类从“经验依赖”向“技术驱动”转型,为花卉产业与生态保护提供高效支撑。

基于YOLO的花卉分类检测系统

  1. 园艺种植精准管理:不同花卉品种对水肥、光照、病虫害抗性差异显著,YOLO可快速区分田间或温室中的花卉品种,辅助种植者针对性制定管理方案。例如,对喜阴的兰花与喜阳的向日葵分类后,可精准调控光照;发现混合种植中的病害敏感品种,能提前聚焦防控,减少农药浪费,提升花卉品质。

  2. 花卉市场高效分拣:花卉交易中,品种纯度直接影响售价,YOLO可搭载分拣线设备,自动识别采收后花卉的品种与品相,快速完成分级分拣。相比人工分拣,既能避免品种混淆导致的交易纠纷,又能提升分拣效率,适配花卉保鲜期短的特性,减少流通损耗。

  3. 生态科研与保护:在野外生态调查中,YOLO可通过无人机航拍或红外相机,快速识别区域内花卉种类,尤其对稀有、濒危品种(如霍山石斛、大黄花虾脊兰)的分布范围与生长状态进行实时监测。同时,自动记录品种数据,为生态多样性评估、濒危物种保护策略制定提供客观依据。

  4. 文旅与科普赋能:在智慧植物园、花卉主题景区,YOLO可结合游客手机端或园区导览设备,实现“扫码即识别”,实时推送花卉品种、生长习性等科普信息,提升游览体验。同时,为景区客流引导提供数据支撑——通过统计热门花卉品种的聚集人数,合理规划游览路线,避免拥堵。

该数据集含有 5758 张图片,包含Pascal VOC XML格式和YOLO TXT格式,用于训练和测试野外花丛、植物园、公园、植物研究所、花圃等场景进行花卉分类识别

图片格式为jpg格式,标注格式分别为:

YOLO:txt

VOC:xml

数据集均为手工标注,保证标注精确度。

2、数据集文件结构

flower/

——test/

————Annotations/

————images/

————labels/

——train/

————Annotations/

————images/

————labels/

——valid/

————Annotations/

————images/

————labels/

——data.yaml

  • 该数据集已划分训练集样本,分别是:test目录(测试集)、train目录(训练集)、valid目录(验证集);
  • Annotations文件夹为Pascal VOC格式的XML文件 ;
  • images文件夹为jpg格式的数据样本;
  • labels文件夹是YOLO格式的TXT文件;
  • data.yaml是数据集配置文件,包含花卉分类检测的目标分类和加载路径。

​​

Annotations目录下的xml文件内容如下:

<?xml version="1.0" encoding="utf-8"?>
	<annotation>
		<folder>driving_annotation_dataset</folder>
		<filename>23_jpg.rf.d6e458a1f3dc3c6eb911de6d136addf1.jpg</filename>
		<size>
			<width>416</width>
			<height>416</height>
			<depth>3</depth>
		</size>
		<object>
			<name>Rose</name>
			<pose>Unspecified</pose>
			<truncated>0</truncated>
			<difficult>0</difficult>
			<bndbox>
				<xmin>163</xmin>
				<ymin>100</ymin>
				<xmax>266</xmax>
				<ymax>200</ymax>
			</bndbox>
		</object>
	</annotation>

labels目录下的txt文件内容如下:

2 0.578125 0.7716346153846154 0.3629807692307693 0.4326923076923077
2 0.8040865384615385 0.23197115384615385 0.34375 0.4495192307692308
2 0.3966346153846154 0.4435096153846154 0.3701923076923077 0.41586538461538464

3、数据集适用范围 

  • 目标检测场景,监控识别,无人机识别
  • yolo训练模型或其他模型
  • 野外花丛、植物园、公园、植物研究所、花圃
  • 可用于园艺种植精准管理、花卉市场高效分拣、生态科研与保护、文旅与科普赋能等

4、数据集标注结果 

4.1、数据集内容 

  1. 场景视角:监控视角数据样本,人员视角数据样本
  2. 标注内容:names: ['daisy', 'dandelion', 'Rose', 'sunflower', 'champaka', 'chitrak', 'Common_Lanthana', 'Hibiscus', 'honeysuckle', 'indian_mallow', 'Jatropha', 'malabar_melastome', 'Marigold', 'shankupushpam', 'spider_lily'],总计15个分类;
  3. 图片总量:5758 张图片数据;
  4. 标注类型:含有Pascal VOC XML格式和yolo TXT格式;

5、训练过程

5.1、导入训练数据

下载YOLOv8项目压缩包,解压在任意本地workspace文件夹中。

下载YOLOv8预训练模型,导入到ultralytics-main项目根目录下。

​​​​​​

ultralytics-main项目根目录下,创建data文件夹,并在data文件夹下创建子文件夹:Annotations、images、imageSets、labels,其中,将pascal VOC格式的XML文件手动导入到Annotations文件夹中,将JPG格式的图像数据导入到images文件夹中,imageSets和labels两个文件夹不导入数据。

data目录结构如下:

data/

——Annotations/   //存放xml文件

——images/          //存放jpg图像

——imageSets/

——labels/

整体项目结构如下所示:

​​​

5.2、数据分割

首先在ultralytics-main目录下创建一个split_train_val.py文件,运行文件之后会在imageSets文件夹下将数据集划分为训练集train.txt、验证集val.txt、测试集test.txt,里面存放的就是用于训练、验证、测试的图片名称。

import os
import random

trainval_percent = 0.9
train_percent = 0.9
xmlfilepath = 'data/Annotations'
txtsavepath = 'data/ImageSets'
total_xml = os.listdir(xmlfilepath)

num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)

ftrainval = open('data/ImageSets/trainval.txt', 'w')
ftest = open('data/ImageSets/test.txt', 'w')
ftrain = open('data/ImageSets/train.txt', 'w')
fval = open('data/ImageSets/val.txt', 'w')

for i in list:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        ftrainval.write(name)
        if i in train:
            ftrain.write(name)
        else:
            fval.write(name)
    else:
        ftest.write(name)

ftrainval.close()
ftrain.close()
fval.close()
ftest.close()

5.3、数据集格式化处理

在ultralytics-main目录下创建一个voc_label.py文件,用于处理图像标注数据,将其从XML格式(通常用于Pascal VOC数据集)转换为YOLO格式。

convert_annotation函数

  • 这个函数读取一个图像的XML标注文件,将其转换为YOLO格式的文本文件。

  • 它打开XML文件,解析树结构,提取图像的宽度和高度。

  • 然后,它遍历每个目标对象(object),检查其类别是否在classes列表中,并忽略标注为困难(difficult)的对象。

  • 对于每个有效的对象,它提取边界框坐标,进行必要的越界修正,然后调用convert函数将坐标转换为YOLO格式。

  • 最后,它将类别ID和归一化后的边界框坐标写入一个新的文本文件

import xml.etree.ElementTree as ET
import os
from os import getcwd

sets = ['train', 'val', 'test']
classes = ['daisy', 'dandelion', 'Rose', 'sunflower', 'champaka', 'chitrak', 'Common_Lanthana', 'Hibiscus', 'honeysuckle', 'indian_mallow', 'Jatropha', 'malabar_melastome', 'Marigold', 'shankupushpam', 'spider_lily'] # 根据标签名称填写类别
abs_path = os.getcwd()
print(abs_path)


def convert(size, box):
    dw = 1. / (size[0])
    dh = 1. / (size[1])
    x = (box[0] + box[1]) / 2.0 - 1
    y = (box[2] + box[3]) / 2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return x, y, w, h


def convert_annotation(image_id):
    in_file = open('data/Annotations/%s.xml' % (image_id), encoding='UTF-8')
    out_file = open('data/labels/%s.txt' % (image_id), 'w')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)
    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text),
             float(xmlbox.find('xmax').text),
             float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        b1, b2, b3, b4 = b
        # 标注越界修正
        if b2 > w:
            b2 = w
        if b4 > h:
            b4 = h
        b = (b1, b2, b3, b4)
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')


wd = getcwd()
for image_set in sets:
    if not os.path.exists('data/labels/'):
        os.makedirs('data/labels/')
    image_ids = open('data/ImageSets/%s.txt' % (image_set)).read().strip().split()
    list_file = open('data/%s.txt' % (image_set), 'w')
    for image_id in image_ids:
        list_file.write(abs_path + '/data/images/%s.jpg\n' % (image_id))
        convert_annotation(image_id)
    list_file.close()

 5.4、修改数据集配置文件

在ultralytics-main目录下创建一个data.yaml文件

train: data/train.txt
val: data/val.txt
test: data/test.txt

nc: 15
names: ['daisy', 'dandelion', 'Rose', 'sunflower', 'champaka', 'chitrak', 'Common_Lanthana', 'Hibiscus', 'honeysuckle', 'indian_mallow', 'Jatropha', 'malabar_melastome', 'Marigold', 'shankupushpam', 'spider_lily']

5.5、执行命令

执行train.py

model = YOLO('yolov8s.pt')
results = model.train(data='data.yaml', epochs=200, imgsz=640, batch=16, workers=0)

也可以在终端执行下述命令:

yolo train data=data.yaml model=yolov8s.pt epochs=200 imgsz=640 batch=16 workers=0 device=0

5.6、模型预测 

你可以选择新建predict.py预测脚本文件,输入视频流或者图像进行预测。

代码如下:

import cv2
from ultralytics import YOLO

# Load the YOLOv8 model
model = YOLO("./best.pt") # 自定义预测模型加载路径

# Open the video file
video_path = "./demo.mp4" # 自定义预测视频路径
cap = cv2.VideoCapture(video_path) 

# Get the video properties
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)

# Define the codec and create VideoWriter object
fourcc = cv2.VideoWriter_fourcc(*'mp4v')  # Be sure to use lower case
out = cv2.VideoWriter('./outputs.mp4', fourcc, fps, (frame_width, frame_height)) # 自定义输出视频路径

# Loop through the video frames
while cap.isOpened():
    # Read a frame from the video
    success, frame = cap.read()

    if success:
        # Run YOLOv8 inference on the frame
        # results = model(frame)
        results = model.predict(source=frame, save=True, imgsz=640, conf=0.5)

        results[0].names[0] = "自行修改中文名称"
        # Visualize the results on the frame
        annotated_frame = results[0].plot()

        # Write the annotated frame to the output file
        out.write(annotated_frame)

        # Display the annotated frame (optional)
        cv2.imshow("YOLOv8 Inference", annotated_frame)

        # Break the loop if 'q' is pressed
        if cv2.waitKey(1) & 0xFF == ord("q"):
            break
    else:
        # Break the loop if the end of the video is reached
        break

# Release the video capture and writer objects
cap.release()
out.release()
cv2.destroyAllWindows()

图片推理,代码如下:

import warnings

warnings.filterwarnings('ignore')
from ultralytics import YOLO

if __name__ == '__main__':
    model = YOLO('models/best.pt')
    model.predict(source='test_pic',
                  imgsz=640,
                  save=True,
                  conf=0.25
                  )

也可以直接在命令行窗口或者Annoconda终端输入以下命令进行模型预测:

yolo predict model="best.pt" source='demo.jpg'

6、获取数据集 

文章底部名片或主页私信获取数据集或检测系统~

二、YOLO花卉分类检测系统

1、功能介绍

1. 模型管理

支持自定义上传模型文件,一键加载所选模型,基于 YOLO 框架进行推理。

2. 图片检测

    - 支持上传本地图片文件,自动完成格式校验。

    - 对上传图片进行目标检测,检测结果以带有边框和标签的图片形式返回并展示。

    - 检测结果可下载保存。

3. 视频检测与实时流

    - 支持上传本地视频文件,自动完成格式校验。

    - 对视频逐帧检测,检测结果通过 MJPEG 流实时推送到前端页面,用户可边看边等。

    - 支持摄像头实时检测(如有接入摄像头)。

4. 置信度阈值调节

    - 前端可实时调整检测置信度阈值,动态影响检测结果。

    - 阈值调整后,后端推理自动应用新阈值,无需重启。

5. 日志与状态反馈

    - 前端集成日志区,实时显示模型加载、推理、文件上传等操作的进度与结果。

    - 检测异常、错误信息及时反馈,便于排查。

    - 一键清空日志,笔面长期占用内存。

 ​​​​  

2、创建环境并安装依赖:

conda create -n ultralytics-env python=3.10
conda activate ultralytics-env
pip install -r requirements.txt

3、启动项目

python app.py

打开浏览器访问:http://localhost:5000

4、效果展示

4.1、推理效果

      

4.2、日志文本框

4.3、摄像头检测

5、前端核心页面代码

<!doctype html>
<html lang="zh-CN">

<head>
    <meta charset="utf-8">
    <meta name="viewport" content="width=device-width,initial-scale=1">
    <title>视觉检测系统 - Web UI</title>
    <link rel="stylesheet" href="/static/style.css">
    <link rel="icon" href="/favicon.ico">
</head>

<body>
    <div class="container main-flex">
        <!-- 左侧内容区 -->
        <div class="left-content">
            <header>
                <h1>YOLO花卉分类检测系统</h1>
                <div id="currentModelDisplay" class="modelDisplay" title="当前模型">当前模型:未上传模型</div>
            </header>
            <main>
                <div class="videoPanel">
                    <div class="pane">
                        <h3>原图 / 视频</h3>
                        <div class="preview" id="srcPreview">预览区</div>
                    </div>
                    <div class="pane">
                        <h3>检测结果</h3>
                        <div class="preview" id="detPreview">检测结果</div>
                    </div>
                </div>
                <section class="logArea">
                    <div class="logHeader">
                        <h3>日志</h3>
                    </div>
                    <div class="logInner">
                        <div id="logs" class="logs"></div>
                    </div>
                </section>
            </main>
        </div>
        <!-- 右侧按钮栏 -->
        <aside class="right-bar">
            <!-- 1. 模型上传/加载区 -->
            <section class="model-section">
                <button id="uploadModelBtn" class="ghost">上传模型
                    <input id="modelFileInput" type="file" accept=".pt" title="选择 .pt 模型文件">
                </button>
                <button id="loadModel">加载模型</button>
            </section>

            <!-- 2. 检测方式选择区 -->
            <section class="detect-mode-section">
                <div class="detect-mode-title">请选择检测方式</div>
                <div class="detect-mode-radio-group">
                    <label><input type="radio" name="detectMode" value="upload" checked> 图片/视频</label>
                    <label><input type="radio" name="detectMode" value="camera"> 摄像头</label>
                </div>
                <div id="detectModeUpload" class="detect-mode-panel">
                    <div class="uploaded-file-name">
                        <span id="uploadedFileName" class="placeholder">未选择文件</span>
                    </div>
                    <div style="height: 22px;"></div>
                    <button id="uploadBtn">上传文件
                        <input id="fileInput" type="file" accept="image/*,video/*" title="上传图片或视频" aria-label="上传图片或视频">
                    </button>
                </div>
                <div id="detectModeCamera" class="detect-mode-panel" style="display:none;">
                    <button id="cameraDetectBtn" class="ghost">开启摄像头</button>
                    <div id="cameraPreview" class="camera-preview">
                        <video id="localCameraVideo" autoplay muted playsinline></video>
                        <div class="camera-controls">
                            <button id="stopCameraBtn" class="ghost">关闭摄像头</button>
                        </div>
                    </div>
                </div>
                <div class="confWrap">
                    <label class="conf">置信度
                        <input id="confRange" type="range" min="0.01" max="0.99" step="0.01" value="0.5">
                        <input id="confValue" type="number" min="0.01" max="0.99" step="0.01" value="0.5">
                    </label>
                </div>
            </section>

            <!-- 3. 操作按钮区 -->
            <section class="action-btn-section">
                <button id="startBtn" disabled class="start">开始检测</button>
                <button id="stopBtn" disabled class="stop">停止</button>
                <button id="clearLogs" class="ghost">清空日志</button>
            </section>
        </aside>
    </div>
    <script src="/static/app.js"></script>
</body>

</html>

6、代码获取

文章底部名片或私信获取系统源码和数据集~

更多数据集请查看置顶博文。

以上内容均为原创。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CV小涵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值