pytorch版的bilstm+crf实现sequence label

CRF理解标注与pytorch代码示例
博主在理解CRF时花费了一些精力,对难以理解的地方进行标注,通过不时查看来加强记忆,所使用的代码是pytorch文档上的示例。
部署运行你感兴趣的模型镜像

在理解CRF的时候费了一些功夫,将一些难以理解的地方稍微做了下标注,隔三差五看看加强记忆, 代码是pytorch文档上的example

import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.optim as optim

def to_scalar(var): #var是Variable,维度是1
    # returns a python float
    return var.view(-1).data.tolist()[0]

def argmax(vec):
    # return the argmax as a python int
    _, idx = torch.max(vec, 1)
    return to_scalar(idx)

def prepare_sequence(seq, to_ix):
    idxs = [to_ix[w] for w in seq]
    tensor = torch.LongTensor(idxs)
    return autograd.Variable(tensor)

# Compute log sum exp in a numerically stable way for the forward algorithm
def log_sum_exp(vec): #vec是1*5, type是Variable

    max_score = vec[0, argmax(vec)]
    #max_score维度是1, max_score.view(1,-1)维度是1*1,max_score.view(1, -1).expand(1, vec.size()[1])的维度是1*5
    max_score_broadcast = max_score.view(1, -1).expand(1, vec.size()[1]) # vec.size()维度是1*5
    return max_score + torch.log(torch.sum(torch.exp(vec - max_score_broadcast)))#为什么指数之后再求和,而后才log呢

class BiLSTM_CRF(nn.Module):
    def 

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值