C++汉诺塔问题 解题思路及递归算法实现
汉诺塔问题·起源
汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具。上帝创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上安大小顺序摞着64片黄金圆盘。上帝命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。
转自:https://zhidao.baidu.com/
问题描述
汉诺塔问题是一个经典的问题。汉诺塔(Hanoi Tower),又称河内塔,源于印度一个古老传说。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,任何时候,在小圆盘上都不能放大圆盘,且在三根柱子之间一次只能移动一个圆盘。
问,现在A柱上有n片黄金圆盘,要将这n片圆盘按照要求,移动到C柱上,共需移动多少次?
分析问题
当我第一次看到这个问题时,一脸懵,在通过查找资料和学习解题思路后,豁然开朗。
首先
我们要解决的是如何移动的问题,我怎么才能将n片圆盘按照要求移动到目标柱上去呢?
在这里面,我们将A柱作为当前柱,B柱作为中转柱,C柱作为目标柱
如果我们要让A柱(当前柱)中的圆盘移动到C柱(目标柱),那么就需要B柱(中转柱)的参与。
我们可以把n个圆盘简化,看作两个圆盘进行移动,即第n个圆盘,和n-1个圆盘
我们可以得到移动顺序:
第一次:A---->B
第二次:A---->C
第三次:B---->C
(这是A柱上只有两个圆盘的规律)
n== 1:A—>C 共1次
n== 2:A—>B A—>C B—>C 共3次
n== 3