利用case class导入有header的txt文件&利用csv创建dataFrame的时候使用schema去定义dataFrame

本文介绍了如何使用Scala中的case class来处理有header的txt文件,通过mapPartitionsWithIndex方法转化为DataFrame。同时,展示了在创建DataFrame时,如何利用case class定义schema,确保数据结构的一致性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.有header的txt文件创建DataFrame:

利用 mapPartitionsWithIndex

val teacherRdd = sc.textFile("src/test/teacher.txt")
val teacherRddSchema = teacherRdd.mapPartitionsWithIndex((idx, iter) => if (idx == 0) iter.drop(1) else iter).map(row => row.split(" ")).map(field => teacher(field(0).toInt,field(1),field(2)))
val teacherDF = teacherRddSchema.toDF()

2.利用csv创建dataFrame的时候,给定case class去定义schema

import org.apache.spark.sql.Encoders

case class student (id:Int, name:String, course:String,score:Int)

val schema = Encoders.product[student].schema
val studentDf = spark.read.format("CSV").option("header",true).schema(schema).load("src/test/student.csv").as[student]
studentDf.printSchema()

 

完整程序:

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession
import org.apache.log4j._
import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions._
import org.apache.spark.sql.Encoders

case class teacher (id:Int, name:String, course:String)
case class student (id:Int, name:String, course:String,score:Int)
case class result ( name:String, course:String, score:Int)

object test {
  def main(args: Array[String]): Unit = {
    Logger.getLogger("org").setLevel({Level.ERROR})

    val conf = new SparkConf().setAppName("test").setMaster("local")
    val sc = new SparkContext(conf)

    val spark = SparkSession.builder().appName("spark").getOrCreate()
    import spark.implicits._

    val schema = Encoders.product[student].schema
    val studentDf = spark.read.format("CSV").option("header",true).schema(schema).load("src/test/student.csv").as[student]
    studentDf.printSchema()


    val teacherRdd = sc.textFile("src/test/teacher.txt")
    val teacherRddSchema = teacherRdd.mapPartitionsWithIndex((idx, iter) => if (idx == 0) iter.drop(1) else iter).map(row => row.split(" ")).map(field => teacher(field(0).toInt,field(1),field(2)))
    val teacherDF = teacherRddSchema.toDF()
    teacherDF.printSchema()
    teacherDF.show()


    val rankSpec = Window.partitionBy("course").orderBy(studentDf("score").desc)
    val rank = studentDf.withColumn("rank",dense_rank().over(rankSpec))

    val result = rank.select("*").where($"rank" <= 1).drop("rank")

    println("result:")
    result.show()

    /*
    *
    * result:
      +---+------+--------+-----+
      | id|  name|  course|score|
      +---+------+--------+-----+
      |  5|Kelvin|    Math|   99|
      |  2|  Lucy| English|   88|
      |  3| Sandy|Computer|   95|
      |  7| Lucas| Physics|   99|
      +---+------+--------+-----+
    *
    *
    * */

    println("result2")
    val result2 = studentDf.groupBy("course").agg(Map("score" -> "max"))
    result2.show()

    /*
    *
    * result2
      +--------+----------+
      |  course|max(score)|
      +--------+----------+
      |    Math|        99|
      | English|        88|
      |Computer|        95|
      | Physics|        99|
      +--------+----------+
    *
    * */

    result.as[result].foreach(row => println(s"${row.name} in ${row.course} get the hightest score ${row.score}"))


    studentDf.show()
    val result1 = studentDf.select("*").where($"score" === studentDf.agg(max("score")).first.get(0))
    result1.show()

    studentDf.groupBy("course").avg("score").show()
    studentDf.groupBy("course").agg(avg("score")).show()
    studentDf.groupBy("course").agg(Map("score"->"max")).show()
    studentDf.groupBy("course").agg(Map("score"->"Min")).show()
    studentDf.groupBy("course").agg(("score","min")).show()
    studentDf.groupBy("course").agg(Map("score" -> "sum")).show()

  }

}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值