1012 Joseph 约瑟夫问题 总结了一个公式 n人报m第t轮出列的人的编号(从0到n-1)

本文探讨了约瑟夫问题的变种,旨在找到最小的数m,使得所有坏人都在第一个好人之前被淘汰出局。通过编程实现了一种有效的方法来解决这个问题,并提供了具体的输入输出示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Joseph
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 31555 Accepted: 11826

Description

The Joseph's problem is notoriously known. For those who are not familiar with the original problem: from among n people, numbered 1, 2, . . ., n, standing in circle every mth is going to be executed and only the life of the last remaining person will be saved. Joseph was smart enough to choose the position of the last remaining person, thus saving his life to give us the message about the incident. For example when n = 6 and m = 5 then the people will be executed in the order 5, 4, 6, 2, 3 and 1 will be saved.

Suppose that there are k good guys and k bad guys. In the circle the first k are good guys and the last k bad guys. You have to determine such minimal m that all the bad guys will be executed before the first good guy.

Input

The input file consists of separate lines containing k. The last line in the input file contains 0. You can suppose that 0 < k < 14.

Output

The output file will consist of separate lines containing m corresponding to k in the input file.

Sample Input

3
4
0

Sample Output

5
30
#include<iostream>
#include<cstdio>
using namespace std;
int f(int n,int m,int t)
{
    if(t==1) return (m-1)%n;
    else return (m%n+f(n-1,m,t-1))%n;
}//n人报m第t轮出列的人的编号(从0到n-1)
int res[15];
int main()
{
    int n,m,k;
    for(int k=1;k<=13;k++)
    {
        int n=2*k;
        for(m=k+1;;m++)
        {
            int flag=1;
            for(int i=1;i<=k;i++)
            {
                int cnt=f(n,m,i);
                if(cnt>=0&&cnt<k)
                {
                    flag=0;break;
                }
            }
            if(flag) break;
        }
        res[k]=m;
    }
    while(scanf("%d",&k)==1&&k)
    {
        printf("%d/n",res[k]);
    }
 return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值