hdu 3625 Examining the Rooms 第一类斯特林数

在一个发生谋杀案的酒店中,作为侦探需要检查所有房间但门都被锁住,钥匙也在房间内。此问题探讨了在特定条件下破坏一定数量的门来检查所有房间的可能性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Examining the Rooms

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 182    Accepted Submission(s): 89

Problem Description
A murder happened in the hotel. As the best detective in the town, you should examine all the N rooms of the hotel immediately. However, all the doors of the rooms are locked, and the keys are just locked in the rooms, what a trap! You know that there is exactly one key in each room, and all the possible distributions are of equal possibility. For example, if N = 3, there are 6 possible distributions, the possibility of each is 1/6. For convenience, we number the rooms from 1 to N, and the key for Room 1 is numbered Key 1, the key for Room 2 is Key 2, etc.
To examine all the rooms, you have to destroy some doors by force. But you don’t want to destroy too many, so you take the following strategy: At first, you have no keys in hand, so you randomly destroy a locked door, get into the room, examine it and fetch the key in it. Then maybe you can open another room with the new key, examine it and get the second key. Repeat this until you can’t open any new rooms. If there are still rooms un-examined, you have to randomly pick another unopened door to destroy by force, then repeat the procedure above, until all the rooms are examined.
Now you are only allowed to destroy at most K doors by force. What’s more, there lives a Very Important Person in Room 1. You are not allowed to destroy the doors of Room 1, that is, the only way to examine Room 1 is opening it with the corresponding key. You want to know what is the possibility of that you can examine all the rooms finally.
 

 

Input
The first line of the input contains an integer T (T ≤ 200), indicating the number of test cases. Then T cases follow. Each case contains a line with two numbers N and K. (1 < N ≤ 20, 1 ≤ K < N)
 

 

Output
Output one line for each case, indicating the corresponding possibility. Four digits after decimal point are preserved by rounding.
 

 

Sample Input
3 3 1 3 2 4 2
 

 

Sample Output
0.3333 0.6667 0.6250
Sample Explanation When N = 3, there are 6 possible distributions of keys: Room 1 Room 2 Room 3 Destroy Times #1 Key 1 Key 2 Key 3 Impossible #2 Key 1 Key 3 Key 2 Impossible #3 Key 2 Key 1 Key 3 Two #4 Key 3 Key 2 Key 1 Two #5 Key 2 Key 3 Key 1 One #6 Key 3 Key 1 Key 2 One In the first two distributions, because Key 1 is locked in Room 1 itself and you can’t destroy Room 1, it is impossible to open Room 1. In the third and forth distributions, you have to destroy Room 2 and 3 both. In the last two distributions, you only need to destroy one of Room 2 or Room
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=21;//(0--N-1)
long long fac[N]={1,1};
long long  stir[N][N];//第一类stirling numbers  给出恰包含 m 个圈的 n 个元素 的排列数目
//stir[i][j] = (i-1) * stir[i-1][j] + stir[i-1][j-1];
void calc_stir(long long stir[][N])//计算第一类斯特林数
{
    memset(stir,0,sizeof(stir));
    stir[0][1]=1;//important
    for(int i=1;i<N;i++)stir[i][0]=0;
    for(int i=1;i<N;i++)
    {
        for(int j=1;j<=i;j++)
        {
            if(i==j) stir[i][j]=1;//important
            else stir[i][j]=(i-1)*stir[i-1][j]+stir[i-1][j-1];
        }
    }
}
int main()
{
    for(int i=2;i<21;i++) fac[i]=i*fac[i-1];
    calc_stir(stir);
    int ci;scanf("%d",&ci);
    while(ci--)
    {
        int n,k;scanf("%d%d",&n,&k);
        long long cnt=0;
        for(int i=1;i<=k;i++) cnt+=stir[n][i]-stir[n-1][i-1];//表示去掉1自己成环的情况
        printf("%.4lf/n",1.0*cnt/fac[n]);
    }
    return 0;
}
内容概要:该论文聚焦于T2WI核磁共振图像超分辨率问题,提出了一种利用T1WI模态作为辅助信息的跨模态解决方案。其主要贡献包括:提出基于高频信息约束的网络框架,通过主干特征提取分支和高频结构先验建模分支结合Transformer模块和注意力机制有效重建高频细节;设计渐进式特征匹配融合框架,采用多阶段相似特征匹配算法提高匹配鲁棒性;引入模型量化技术降低推理资源需求。实验结果表明,该方法不仅提高了超分辨率性能,还保持了图像质量。 适合人群:从事医学图像处理、计算机视觉领域的研究人员和工程师,尤其是对核磁共振图像超分辨率感兴趣的学者和技术开发者。 使用场景及目标:①适用于需要提升T2WI核磁共振图像分辨率的应用场景;②目标是通过跨模态信息融合提高图像质量,解决传统单模态方法难以克服的高频细节丢失问题;③为临床诊断提供更高质量的影像资料,帮助医生更准确地识别病灶。 其他说明:论文不仅提供了详细的网络架构设计与实现代码,还深入探讨了跨模态噪声的本质、高频信息约束的实现方式以及渐进式特征匹配的具体过程。此外,作者还对模型进行了量化处理,使得该方法可以在资源受限环境下高效运行。阅读时应重点关注论文中提到的技术创新点及其背后的原理,理解如何通过跨模态信息融合提升图像重建效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值