1044: Parencodings
Result | TIME Limit | MEMORY Limit | Run Times | AC Times | JUDGE |
---|---|---|---|---|---|
![]() | 3s | 8192K | 613 | 302 | Standard |
Let S = s1 s2 … s2n be a well-formed string of parentheses. S can be encoded in two different ways:
- By an integer sequence P = p1 p2 … pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence).
- By an integer sequence W = w1 w2 … wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence).
Following is an example of the above encodings:
S (((()()())))
P-sequence 4 5 6666
W-sequence 1 1 1456
Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string.
Input
The first line of the input contains a single integer t (1 ≤ t ≤ 10), the number of test cases, followed by the input data for each test case. The first line of each test case is an integer n (1 ≤ n ≤ 20), and the second line is the P-sequence of a well-formed string. It contains n positive integers, separated with blanks, representing the P-sequence.
Output
The output consists of exactly t lines corresponding to test cases. For each test case, the output line should contain n integers describing the W-sequence of the string corresponding to its given P-sequence.
Sample Input
2 6 4 5 6 6 6 6 9 4 6 6 6 6 8 9 9 9
Sample Output
1 1 1 4 5 6 1 1 2 4 5 1 1 3 9
#include<iostream>
#include<cstring>
using namespace std;
int main()
{
int a[50],c[50],ans[50];//-1'(' 1')'
int ci;cin>>ci;
while(ci--)
{
int n;cin>>n;
for(int i=1;i<=n;i++)cin>>c[i];c[0]=0;
memset(a,0,sizeof(a));
int cnt=1;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=c[i]-c[i-1];j++)
{
a[cnt++]=-1;
}
a[cnt++]=1;
}
// for(int i=1;i<cnt;i++) cout<<a[i]<<"..";cout<<endl;
int l=0;
for(int i=1;i<cnt;i++)
{
if(a[i]==1)
{
a[i]=2;
int num=0;
for(int j=i-1;j>=1;j--)
{
if(a[j]==-2) num++;
if(a[j]==-1) {a[j]=-2;break;}
}
ans[l++]=num+1;
}
}
cout<<ans[0];
for(int i=1;i<l;i++) cout<<" "<<ans[i];cout<<endl;
}
return 0;
}
/*
这样的S能用两种方法来表示(编码):
1。用一个整数序列P=p1p2...pn,其中pi是第i个右括号前的左括号个数
2。用一个整数序列W=w1w2...wn,其中 wi 是从第 i 个右括号往左数直到遇到
和它相对应的左括号时经过的左括号个数(包括与第i个右括号相对应的左括号)。
比如:
S ( ( ( () () () ) ) )
P: 4 5 6 6 6 6
W: 1 1 1 4 5 6
我们的任务就是将一个p序列转化为w序列
*/