1394 Minimum Inversion Number 逆序数 N个数排列

本文探讨了在一组数字排列中找到最小反转次数的问题。通过分析不同排列方式,作者提出了一个有效的排序算法来解决这个问题,并提供了输入输出示例进行验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Minimum Inversion Number

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 724    Accepted Submission(s): 386

Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.

For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:

a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)

You are asked to write a program to find the minimum inversion number out of the above sequences.
 

 

Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
 

 

Output
For each case, output the minimum inversion number on a single line.
 

 

Sample Input
10 1 3 6 9 0 8 5 7 4 2
 

 

Sample Output
16
#include<iostream> #include<cstdio> using namespace std; int a[5005],cnt,t[5005],b[5005]; void merge_sort(int x,int y) { if(y-x>1) { int m=x+(y-x)/2; int p=x,q=m,i=x; merge_sort(x,m); merge_sort(m,y); while(p<m||q<y) { if(q>=y||(p<m&&a[p]<=a[q])) t[i++]=a[p++]; else {t[i++]=a[q++];cnt+=m-p;} } for(i=x;i<y;i++) a[i]=t[i]; } } int main() { int n; while(cin>>n) { for(int i=0;i<n;i++) cin>>a[i],b[i]=a[i]; cnt=0; merge_sort(0,n); int minc=cnt; for(int i=0;i<n;i++) { cnt-=b[i]; cnt+=n-b[i]-1; if(cnt<minc) minc=cnt; } cout<<minc<<endl; } return 0; }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值