Longest Ordered Subsequence
Time Limit:
2000ms
Memory limit:
65536kB
题目描述
A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1, a2, ..., aN) be any sequence (ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
输入
The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000
输出
Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.
样例输入
7
1 7 3 5 9 4 8
样例输出
4
#include
using namespace std;
int dp[1005],a[1005];
int main()
{
int n;
while(cin>>n)
{
for(int i=0;i>a[i];
for(int i=0;ia[j]&&dp[i]maxn) maxn=dp[i];
cout<
2533 Longest Ordered Subsequence
最新推荐文章于 2021-07-25 22:06:01 发布
本文介绍了一种解决求解数值序列中最长有序子序列的方法,包括输入读取、序列处理和输出最大长度。
9587

被折叠的 条评论
为什么被折叠?



