ACM POJ 2533Longest Ordered Subsequence(最长上升子序列,简单DP)

本文介绍了一种使用动态规划解决最长上升子序列问题的方法。通过实例演示了如何寻找给定序列中最长的按数值递增排列的子序列。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Longest Ordered Subsequence
Time Limit: 2000MSMemory Limit: 65536K
Total Submissions: 19643Accepted: 8501

Description

A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence ( a1, a2, ..., aN) be any sequence ( ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

Input

The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

Output

Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

Sample Input

7
1 7 3 5 9 4 8

Sample Output

4

Source

Northeastern Europe 2002, Far-Eastern Subregion
 
/*
POJ2533Longest Ordered Subsequence
最长上升子序列
描述:给一队排列整齐的数列ai,找到数列ai中最长上升子序列。
输入:第一行是数列的元素个数N,第二行是N个整数,范围从0到10,000。(1<=N<=1000)
输出:包括一个整数,表示最长上升子序列的长度。

Sample Input
7
1 7 3 5 9 4 8

Sample Output
4
*/
/*
用动态规划做。
用dp[k]表示以a[k]作为终点的最大上升子序列
则:
dp[1] = 1;
dp[k] = Max (dp[i]:1 <= i < k 且 a[i ]< a[k] 且 k != 1) + 1.
*/
#include
<stdio.h>
#define MAXN 1000
int dp[MAXN+10],a[MAXN+10];//a数组记录输入的序列
int main()
{
int n,i,j;
scanf(
"%d",&n);
for(i=1;i<=n;i++)
scanf(
"%d",&a[i]);
dp[
1]=1;
for(i=2;i<=n;i++)
{
int temp=0;
for(j=1;j<i;j++)
if(a[i]>a[j])
if(temp<dp[j])
temp
=dp[j];
dp[i]
=temp+1;
}
int maxlen=0;
for(i=1;i<=n;i++)
if(maxlen<dp[i])
maxlen
=dp[i];
printf(
"%d\n",maxlen);
return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值