Function Run Fun
- Time Limit:
- 1000ms Memory limit:
- 10000kB
- 题目描述
- We all love recursion! Don't we?
Consider a three-parameter recursive function w(a, b, c):
if a <= 0 or b <= 0 or c <= 0, then w(a, b, c) returns:
1
if a > 20 or b > 20 or c > 20, then w(a, b, c) returns:
w(20, 20, 20)
if a < b and b < c, then w(a, b, c) returns:
w(a, b, c-1) + w(a, b-1, c-1) - w(a, b-1, c)
otherwise it returns:
w(a-1, b, c) + w(a-1, b-1, c) + w(a-1, b, c-1) - w(a-1, b-1, c-1)
This is an easy function to implement. The problem is, if implemented directly, for moderate values of a, b and c (for example, a = 15, b = 15, c = 15), the program takes hours to run because of the massive recursion. 输入 - The input for your program will be a series of integer triples, one per line, until the end-of-file flag of -1 -1 -1. Using the above technique, you are to calculate w(a, b, c) efficiently and print the result. 输出
- Print the value for w(a,b,c) for each triple. 样例输入
-
1 1 1 2 2 2 10 4 6 50 50 50 -1 7 18 -1 -1 -1
样例输出 -
w(1, 1, 1) = 2 w(2, 2, 2) = 4 w(10, 4, 6) = 523 w(50, 50, 50) = 1048576 w(-1, 7, 18) = 1
#include<stdio.h> int opt[100][100][100]; int w(int a,int b,int c) { if(a <= 0 || b <= 0 || c <= 0) return 1; if(opt[a][b][c]!=-1) return opt[a][b][c]; if(a > 20 || b > 20||c > 20){ opt[a][b][c]=w(20, 20, 20); return w(20, 20, 20); } if(a < b && b < c){ opt[a][b][c]=w(a, b, c-1)+w(a, b-1, c-1)-w(a, b-1, c); return w(a, b, c-1)+w(a, b-1, c-1)-w(a, b-1, c); } opt[a][b][c]=w(a-1,b,c)+w(a-1,b-1,c)+w(a-1,b,c-1)-w(a-1,b-1,c-1); return w(a-1,b,c)+w(a-1,b-1,c)+w(a-1,b,c-1)-w(a-1,b-1,c-1); } int main() { int a,b,c; for(a=0;a<100;a++) for(b=0;b<100;b++) for(c=0;c<100;c++) opt[a][b][c]=-1; while(scanf("%d%d%d",&a,&b,&c),!(a==-1 && b==-1 && c==-1)) { printf("w(%d, %d, %d) = %d/n",a,b,c,w(a,b,c)); } return 0; }