1905: Freckles prim

本文介绍了一个使用最小生成树算法来解决连接多个点并使总连线长度最短的问题。通过具体的代码实现,展示了如何计算平面上若干个点之间的最短连接路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 1905: Freckles


ResultTIME LimitMEMORY LimitRun TimesAC TimesJUDGE
3s8192K248101Standard
In an episode of the Dick Van Dyke show, little Richie connects the freckles on his Dad's back to form a picture of the Liberty Bell. Alas, one of the freckles turns out to be a scar, so his Ripley's engagement falls through.

Consider Dick's back to be a plane with freckles at various (x,y) locations. Your job is to tell Richie how to connect the dots so as to minimize the amount of ink used. Richie connects the dots by drawing straight lines between pairs, possibly lifting the pen between lines. When Richie is done there must be a sequence of connected lines from any freckle to any other freckle.

The first line contains 0 < n <= 100, the number of freckles on Dick's back. For each freckle, a line follows; each following line contains two real numbers indicating the (x,y) coordinates of the freckle.

Your program prints a single real number to two decimal places: the minimum total length of ink lines that can connect all the freckles.

Input contains multiple test cases. Process to the end of file.

Sample Input

3
1.0 1.0
2.0 2.0
2.0 4.0

Output for Sample Input

3.41
#include<iostream>
#include<cmath>
#include<cstring>
using namespace std;
double dis(double x1,double y1,double x2,double y2)
{
    return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
int main()
{
    int n;
    while(scanf("%d",&n)==1)
    {
        double a[110][110];
        memset(a,10,sizeof(a));
        double x[110],y[110];
        for(int i=0;i<n;i++) scanf("%lf%lf",&x[i],&y[i]);
        for(int i=0;i<n;i++) for(int j=0;j<n;j++) a[i][j]=dis(x[i],y[i],x[j],y[j]);
        //.........................
        int vis[110];double lowc[110];
        int p;
        double minc,res=0;
        const int inf=(1<<30);
        memset(vis,0,sizeof(vis));
        vis[0]=1;
        for(int i=0;i<n;i++) lowc[i]=a[0][i];
        int flag=0;
        for(int l=1;l<n;l++)
        {
            minc=inf;p=0;
            for(int i=0;i<n;i++)
            {
                if(vis[i]==0&&minc>lowc[i])
                {
                    minc=lowc[i];
                    p=i;
                }
            }
            if (inf == minc) {flag=1; break;}      // 原图不连通
            vis[p]=1;res+=minc;
            for(int i=0;i<n;i++)
            {
                if(vis[i]==0&&lowc[i]>a[p][i]) lowc[i]=a[p][i];
            }
        }
        //...............
        printf("%.2lf/n",res);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值