1905: Freckles
| Result | TIME Limit | MEMORY Limit | Run Times | AC Times | JUDGE |
|---|---|---|---|---|---|
| 3s | 8192K | 248 | 101 | Standard |
Consider Dick's back to be a plane with freckles at various (x,y) locations. Your job is to tell Richie how to connect the dots so as to minimize the amount of ink used. Richie connects the dots by drawing straight lines between pairs, possibly lifting the pen between lines. When Richie is done there must be a sequence of connected lines from any freckle to any other freckle.
The first line contains 0 < n <= 100, the number of freckles on Dick's back. For each freckle, a line follows; each following line contains two real numbers indicating the (x,y) coordinates of the freckle.
Your program prints a single real number to two decimal places: the minimum total length of ink lines that can connect all the freckles.
Input contains multiple test cases. Process to the end of file.
Sample Input
3 1.0 1.0 2.0 2.0 2.0 4.0
Output for Sample Input
3.41
#include<iostream>
#include<cmath>
#include<cstring>
using namespace std;
double dis(double x1,double y1,double x2,double y2)
{
return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
int main()
{
int n;
while(scanf("%d",&n)==1)
{
double a[110][110];
memset(a,10,sizeof(a));
double x[110],y[110];
for(int i=0;i<n;i++) scanf("%lf%lf",&x[i],&y[i]);
for(int i=0;i<n;i++) for(int j=0;j<n;j++) a[i][j]=dis(x[i],y[i],x[j],y[j]);
//.........................
int vis[110];double lowc[110];
int p;
double minc,res=0;
const int inf=(1<<30);
memset(vis,0,sizeof(vis));
vis[0]=1;
for(int i=0;i<n;i++) lowc[i]=a[0][i];
int flag=0;
for(int l=1;l<n;l++)
{
minc=inf;p=0;
for(int i=0;i<n;i++)
{
if(vis[i]==0&&minc>lowc[i])
{
minc=lowc[i];
p=i;
}
}
if (inf == minc) {flag=1; break;} // 原图不连通
vis[p]=1;res+=minc;
for(int i=0;i<n;i++)
{
if(vis[i]==0&&lowc[i]>a[p][i]) lowc[i]=a[p][i];
}
}
//...............
printf("%.2lf/n",res);
}
return 0;
}
本文介绍了一个使用最小生成树算法来解决连接多个点并使总连线长度最短的问题。通过具体的代码实现,展示了如何计算平面上若干个点之间的最短连接路径。
1321

被折叠的 条评论
为什么被折叠?



