2624: Big Campus
| Result | TIME Limit | MEMORY Limit | Run Times | AC Times | JUDGE |
|---|---|---|---|---|---|
| 3s | 8192K | 99 | 18 | Standard |
JLU is a big university consists of six campus. Since it is so big, there are school buses running in it. School bus only stops at bus station. There are n bus stations in JLU, p1...pn. The bus has m route. Each starts and ends at bus station and spends some time. Xiaoming is standing at ps and wants to go to pe. So there comes the question, how fast can Xiaoming go to pe. Xiaoming's walking speed is v. Xiaoming can choose to go by bus or walk. He can even choose to take both. You can assume the bus goes once he get on.
Input
n, m // n <= 100, m <= n * n next n lines (xi, yi) coordinate of the bus station, float number next m lines i, j, t from the ith to jth spend t time v xs, ys // start point xe, ye // end point
Output
a float number, the minimal time, 3digit after dot
Sample Input
2 2 0 0 100 100 1 2 1 2 1 1 1 0 0 99 100 4 3 1 1 50 50 51 51 100 100 1 2 1 2 3 100 3 4 1 5 0 0 99 99
Sample Output
2.000 2.849
Problem Source: provided by zzc
#include<iostream>
#include<cmath>
#include<algorithm>
using namespace std;
class campus
{
public:
double x,y;
};
double distance(double x1,double y1,double x2,double y2)
{
return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
int main()
{
campus a[105];
int n,m;
while(scanf("%d%d",&n,&m)==2)
{
double dis[105][105];
for(int i=0;i<105;i++) for(int j=0;j<105;j++) dis[i][j]=(1<<31)-1;
for(int i=1;i<=n;i++)
{
scanf("%lf%lf",&a[i].x,&a[i].y);
}
for(int i=1;i<=m;i++)
{
int xx,yy;
double t;
scanf("%d%d%lf",&xx,&yy,&t);
if(t<dis[xx][yy]) dis[xx][yy]=t;
}
double v;
scanf("%lf",&v);
scanf("%lf%lf%lf%lf",&a[n+1].x,&a[n+1].y,&a[n+2].x,&a[n+2].y);
for(int i=1;i<=n+2;i++)
for(int j=1;j<=n+2;j++)
dis[i][j]=min(dis[i][j],distance(a[i].x,a[i].y,a[j].x,a[j].y)/v);
/*for(int i=1;i<=n+2;i++)
{
for(int j=1;j<=n+2;j++)
cout<<dis[i][j]<<".....";
cout<<endl;
}*/
for(int k=1;k<=n+2;k++)
{
for(int i=1;i<=n+2;i++)
{
for(int j=1;j<=n+2;j++)
{
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
}
}
}
printf("%.3lf/n",dis[n+1][n+2]);
}
return 0;
}
/*
4 3
1 1
50 50
51 51
100 100
1 2 1
2 3 100
3 4 1
5
0 0
99 99
*/
大学校园最优路径算法
本文介绍了一种解决大学校园内从一点到另一点最短时间问题的算法。该算法综合考虑了步行和乘坐校车两种方式,并通过Floyd算法求解最短路径问题。输入包括校园规模、站点坐标及公交路线等数据。
9859





