import tensorflow as tf
import numpy
import matplotlib.pyplot as plt
rng = numpy.random
# Parameters
learning_rate = 0.01
training_epochs = 1000
display_step = 50
# Training Data
train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,
7.042,10.791,5.313,7.997,5.654,9.27,3.1])
train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,
2.827,3.465,1.65,2.904,2.42,2.94,1.3])
n_samples = train_X.shape[0]
# tf Graph Input
X = tf.placeholder("float")
Y = tf.placeholder("float")
# Set model weights
W = tf.Variable(rng.randn(), name="weight")
b = tf.Variable(rng.randn(), name="bias")
# Construct a linear model
pred = tf.add(tf.multiply(X, W), b)
# Mean squared error
cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples)
# Gradient descent
# Note, minimize() knows to modify W and b because Variable objects are trainable=True by default
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
# Initialize the variables (i.e. assign their default value)
init = tf.global_variables_initializer()
# Start training
with tf.Session() as sess:
# Run the initializer
sess.run(init)
# Fit all training data
for epoch in range(training_epochs):
for (x, y) in zip(train_X, train_Y):
sess.run(optimizer, feed_dict={X: x, Y: y})
# Display logs per epoch step
if (epoch+1) % display_step == 0:
c = sess.run(cost, feed_dict={X: train_X, Y:train_Y})
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c), \
"W=", sess.run(W), "b=", sess.run(b))
print("Optimization Finished!")
training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y})
print("Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n')
# Graphic display
plt.plot(train_X, train_Y, 'ro', label='Original data')
plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
plt.legend()
plt.show()
# Testing example, as requested (Issue #2)
test_X = numpy.asarray([6.83, 4.668, 8.9, 7.91, 5.7, 8.7, 3.1, 2.1])
test_Y = numpy.asarray([1.84, 2.273, 3.2, 2.831, 2.92, 3.24, 1.35, 1.03])
print("Testing... (Mean square loss Comparison)")
testing_cost = sess.run(
tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * test_X.shape[0]),
feed_dict={X: test_X, Y: test_Y}) # same function as cost above
print("Testing cost=", testing_cost)
print("Absolute mean square loss difference:", abs(
training_cost - testing_cost))
plt.plot(test_X, test_Y, 'bo', label='Testing data')
plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
plt.legend()
plt.show()Variable和Tensor类似,但是有几点不同:
1. Variable可更改,assign函数
2. Variable常用于存储网络权重矩阵等变量,Tensor大多是中间结果
3. Variable会直接分配内存空间,而Tensor则是在运行时才分配
pred = tf.add(tf.multiply(X, W), b) # 线性回归模型,即预测值Y'=WX+b
tf.reduce_sum(
input_tensor,
axis=None,
keepdims=None, # axis没有体现的轴保持原有的维度
name=None,
reduction_indices=None, #弃用参数,使用axis
keep_dims=None #弃用参数,使用keepdims
)# 从维度上对张量进行缩减求和x = tf.constant([[1, 1, 1], [1, 1, 1]]) # [2,3]
tf.reduce_sum(x) # 6 默认全部相加得到一个数
tf.reduce_sum(x, 0) # [2, 2, 2] 沿shape[0]轴缩减 得到shape为[3]
tf.reduce_sum(x, 1) # [3, 3] 沿shape[1]轴缩减 得到shape[2]
tf.reduce_sum(x, 1, keepdims=True) # [[3], [3]] 原shape为[2,3] keepdims之后缩减为shape[2,1]
tf.reduce_sum(x, [0, 1]) # 6 对0轴和1轴同时进行缩减cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples) # 最小二乘法 对所有样本计算 1/2 * (Y'-Y)^2 / n
__init__(
learning_rate,
use_locking=False,
name='GradientDescent'
)optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
__init__(
learning_rate, # 学习速率 梯度下降的步长
use_locking=False,
name='GradientDescent'
) # tf.train.GradientDescentOptimizer构造函数minimize(
loss, # 包含需要求最小值的张量
global_step=None,
var_list=None,
gate_gradients=GATE_OP,
aggregation_method=None,
colocate_gradients_with_ops=False,
name=None,
grad_loss=None
)init = tf.global_variables_initializer() # 初始化所有的Variable,在Session.run函数中执行会自动获取所有Variable并进行初始化
# Fit all training data 线性回归模型迭代
for epoch in range(training_epochs):
for (x, y) in zip(train_X, train_Y): # 逐个样本进行计算
sess.run(optimizer, feed_dict={X: x, Y: y})
# Display logs per epoch step
if (epoch+1) % display_step == 0:
c = sess.run(cost, feed_dict={X: train_X, Y:train_Y}) # 计算整体损失
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c), \
"W=", sess.run(W), "b=", sess.run(b)) # 计算W和b迭代完成后,W和b的值已经确定,测试的时候对使用W和b的计算图都会按照更新后的W和b进行计算
382

被折叠的 条评论
为什么被折叠?



