tensorflow--Basic Operations

本文介绍了使用TensorFlow进行基本运算的方法,包括常量运算、变量运算及矩阵乘法等核心操作。通过具体实例展示了如何定义张量、执行加法与乘法运算,并详细解释了tf.placeholder、tf.add、tf.multiply及tf.matmul等函数的应用。

import tensorflow as tf

# Basic constant operations
# The value returned by the constructor represents the output
# of the Constant op.
a = tf.constant(2)
b = tf.constant(3)

# Launch the default graph.
with tf.Session() as sess:
    print("a=2, b=3")
    print("Addition with constants: %i" % sess.run(a+b))
    print("Multiplication with constants: %i" % sess.run(a*b))

# Basic Operations with variable as graph input
# The value returned by the constructor represents the output
# of the Variable op. (define as input when running session)
# tf Graph input
a = tf.placeholder(tf.int16)
b = tf.placeholder(tf.int16)

# Define some operations
add = tf.add(a, b)
mul = tf.multiply(a, b)

# Launch the default graph.
with tf.Session() as sess:
    # Run every operation with variable input
    print("Addition with variables: %i" % sess.run(add, feed_dict={a: 2, b: 3}))
    print("Multiplication with variables: %i" % sess.run(mul, feed_dict={a: 2, b: 3}))


# ----------------
# More in details:
# Matrix Multiplication from TensorFlow official tutorial

# Create a Constant op that produces a 1x2 matrix.  The op is
# added as a node to the default graph.
#
# The value returned by the constructor represents the output
# of the Constant op.
matrix1 = tf.constant([[3., 3.]])

# Create another Constant that produces a 2x1 matrix.
matrix2 = tf.constant([[2.],[2.]])

# Create a Matmul op that takes 'matrix1' and 'matrix2' as inputs.
# The returned value, 'product', represents the result of the matrix
# multiplication.
product = tf.matmul(matrix1, matrix2)

# To run the matmul op we call the session 'run()' method, passing 'product'
# which represents the output of the matmul op.  This indicates to the call
# that we want to get the output of the matmul op back.
#
# All inputs needed by the op are run automatically by the session.  They
# typically are run in parallel.
#
# The call 'run(product)' thus causes the execution of threes ops in the
# graph: the two constants and matmul.
#
# The output of the op is returned in 'result' as a numpy `ndarray` object.
with tf.Session() as sess:
    result = sess.run(product)
    print(result)
    # ==> [[ 12.]]

tf.placeholder(
    dtype,
    shape=None,
    name=None
)# 可以理解为为定义一个张量并为其申请一块空间,并且,以此方式定义的张量必须通过函数参数feed_dict来赋值,Session.run(), Tensor.eval(), Operation.run()

placeholder定义的张量不能直接用于值化运算。

tf.add(
    x,
    y,
    name=None
)# 返回x+y的值,张量加法运算,x,y的shape必须一致
tf.multiply(
    x,
    y,
    name=None
)# 返回x*y的值,张量的乘法运算,shape必须一致
run(
    fetches,
    feed_dict=None, #数据字典,字典的key与fetches中的计算图元素一一对应,并将value赋值给这些张量
    options=None,
    run_metadata=None
)

sess.run(add, feed_dict={a: 2, b: 3}) #将2,3分别赋值给placeholder的a, b,然后执行add加法运算,得到结果
tf.matmul(
    a,
    b,
    transpose_a=False, # 矩阵转置
    transpose_b=False,
    adjoint_a=False, # 共轭矩阵
    adjoint_b=False,
    a_is_sparse=False, # 稀疏矩阵
    b_is_sparse=False,
    name=None
)# 矩阵乘法






下载方式:https://pan.quark.cn/s/a4b39357ea24 布线问题(分支限界算法)是计算机科学和电子工程领域中一个广为人知的议题,它主要探讨如何在印刷电路板上定位两个节点间最短的连接路径。 在这一议题中,电路板被构建为一个包含 n×m 个方格的矩阵,每个方格能够被界定为可通行或不可通行,其核心任务是定位从初始点到最终点的最短路径。 分支限界算法是处理布线问题的一种常用策略。 该算法与回溯法有相似之处,但存在差异,分支限界法仅需获取满足约束条件的一个最优路径,并按照广度优先或最小成本优先的原则来探索解空间树。 树 T 被构建为子集树或排列树,在探索过程中,每个节点仅被赋予一次成为扩展节点的机会,且会一次性生成其全部子节点。 针对布线问题的解决,队列式分支限界法可以被采用。 从起始位置 a 出发,将其设定为首个扩展节点,并将与该扩展节点相邻且可通行的方格加入至活跃节点队列中,将这些方格标记为 1,即从起始方格 a 到这些方格的距离为 1。 随后,从活跃节点队列中提取队首节点作为下一个扩展节点,并将与当前扩展节点相邻且未标记的方格标记为 2,随后将这些方格存入活跃节点队列。 这一过程将持续进行,直至算法探测到目标方格 b 或活跃节点队列为空。 在实现上述算法时,必须定义一个类 Position 来表征电路板上方格的位置,其成员 row 和 col 分别指示方格所在的行和列。 在方格位置上,布线能够沿右、下、左、上四个方向展开。 这四个方向的移动分别被记为 0、1、2、3。 下述表格中,offset[i].row 和 offset[i].col(i=0,1,2,3)分别提供了沿这四个方向前进 1 步相对于当前方格的相对位移。 在 Java 编程语言中,可以使用二维数组...
源码来自:https://pan.quark.cn/s/a4b39357ea24 在VC++开发过程中,对话框(CDialog)作为典型的用户界面组件,承担着与用户进行信息交互的重要角色。 在VS2008SP1的开发环境中,常常需要满足为对话框配置个性化背景图片的需求,以此来优化用户的操作体验。 本案例将系统性地阐述在CDialog框架下如何达成这一功能。 首先,需要在资源设计工具中构建一个新的对话框资源。 具体操作是在Visual Studio平台中,进入资源视图(Resource View)界面,定位到对话框(Dialog)分支,通过右键选择“插入对话框”(Insert Dialog)选项。 完成对话框内控件的布局设计后,对对话框资源进行保存。 随后,将着手进行背景图片的载入工作。 通常有两种主要的技术路径:1. **运用位图控件(CStatic)**:在对话框界面中嵌入一个CStatic控件,并将其属性设置为BST_OWNERDRAW,从而具备自主控制绘制过程的权限。 在对话框的类定义中,需要重写OnPaint()函数,负责调用图片资源并借助CDC对象将其渲染到对话框表面。 此外,必须合理处理WM_CTLCOLORSTATIC消息,确保背景图片的展示不会受到其他界面元素的干扰。 ```cppvoid CMyDialog::OnPaint(){ CPaintDC dc(this); // 生成设备上下文对象 CBitmap bitmap; bitmap.LoadBitmap(IDC_BITMAP_BACKGROUND); // 获取背景图片资源 CDC memDC; memDC.CreateCompatibleDC(&dc); CBitmap* pOldBitmap = m...
### TensorFlow with Mamba Installation and Usage Guide #### Installing TensorFlow Using Mamba Mamba is a faster, drop-in replacement for conda that provides improved dependency solving speed. For installing TensorFlow using mamba, one can follow these steps to set up an environment specifically tailored for TensorFlow[^1]. To begin the installation process: ```bash mamba create -n tensorflow_env python=3.9 mamba activate tensorflow_env mamba install tensorflow ``` This command sequence creates a new environment named `tensorflow_env` configured with Python version 3.9, activates this environment, then installs TensorFlow within it. For GPU support, replace `tensorflow` with `tensorflow-gpu`. This ensures that all necessary CUDA libraries are installed alongside TensorFlow for optimal performance on compatible hardware configurations. #### Verifying Installation Success After completing the setup procedure, verifying the successful installation of TensorFlow becomes essential before proceeding further into development or experimentation phases. Execute the following code snippet inside any Python interpreter running under the newly created environment: ```python import tensorflow as tf print(tf.__version__) ``` A properly functioning system will output the currently installed TensorFlow version number without raising exceptions during import operations. #### Basic Usage Example Below demonstrates how to construct a simple neural network model utilizing Keras API provided by TensorFlow library after setting everything up correctly according to above instructions: ```python import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense model = Sequential([ Dense(64, activation='relu', input_shape=(784,)), Dense(10, activation='softmax') ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) data = tf.random.normal([1000, 784]) labels = tf.random.uniform([1000], maxval=10, dtype=tf.int32) model.fit(data, labels, epochs=10) ``` The script initializes a two-layer feedforward neural network trained over randomly generated dataset samples meant only for demonstration purposes here. --related questions-- 1. What versions of Python does Mamba officially support? 2. How do I switch between different environments managed via Mamba? 3. Can other machine learning frameworks be similarly integrated through Mamba? 4. Is there documentation available regarding best practices when working with TensorFlow models? 5. Are there specific advantages offered by choosing Mamba over traditional Conda?
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值