tensorflow--Basic Operations

本文介绍了使用TensorFlow进行基本运算的方法,包括常量运算、变量运算及矩阵乘法等核心操作。通过具体实例展示了如何定义张量、执行加法与乘法运算,并详细解释了tf.placeholder、tf.add、tf.multiply及tf.matmul等函数的应用。

import tensorflow as tf

# Basic constant operations
# The value returned by the constructor represents the output
# of the Constant op.
a = tf.constant(2)
b = tf.constant(3)

# Launch the default graph.
with tf.Session() as sess:
    print("a=2, b=3")
    print("Addition with constants: %i" % sess.run(a+b))
    print("Multiplication with constants: %i" % sess.run(a*b))

# Basic Operations with variable as graph input
# The value returned by the constructor represents the output
# of the Variable op. (define as input when running session)
# tf Graph input
a = tf.placeholder(tf.int16)
b = tf.placeholder(tf.int16)

# Define some operations
add = tf.add(a, b)
mul = tf.multiply(a, b)

# Launch the default graph.
with tf.Session() as sess:
    # Run every operation with variable input
    print("Addition with variables: %i" % sess.run(add, feed_dict={a: 2, b: 3}))
    print("Multiplication with variables: %i" % sess.run(mul, feed_dict={a: 2, b: 3}))


# ----------------
# More in details:
# Matrix Multiplication from TensorFlow official tutorial

# Create a Constant op that produces a 1x2 matrix.  The op is
# added as a node to the default graph.
#
# The value returned by the constructor represents the output
# of the Constant op.
matrix1 = tf.constant([[3., 3.]])

# Create another Constant that produces a 2x1 matrix.
matrix2 = tf.constant([[2.],[2.]])

# Create a Matmul op that takes 'matrix1' and 'matrix2' as inputs.
# The returned value, 'product', represents the result of the matrix
# multiplication.
product = tf.matmul(matrix1, matrix2)

# To run the matmul op we call the session 'run()' method, passing 'product'
# which represents the output of the matmul op.  This indicates to the call
# that we want to get the output of the matmul op back.
#
# All inputs needed by the op are run automatically by the session.  They
# typically are run in parallel.
#
# The call 'run(product)' thus causes the execution of threes ops in the
# graph: the two constants and matmul.
#
# The output of the op is returned in 'result' as a numpy `ndarray` object.
with tf.Session() as sess:
    result = sess.run(product)
    print(result)
    # ==> [[ 12.]]

tf.placeholder(
    dtype,
    shape=None,
    name=None
)# 可以理解为为定义一个张量并为其申请一块空间,并且,以此方式定义的张量必须通过函数参数feed_dict来赋值,Session.run(), Tensor.eval(), Operation.run()

placeholder定义的张量不能直接用于值化运算。

tf.add(
    x,
    y,
    name=None
)# 返回x+y的值,张量加法运算,x,y的shape必须一致
tf.multiply(
    x,
    y,
    name=None
)# 返回x*y的值,张量的乘法运算,shape必须一致
run(
    fetches,
    feed_dict=None, #数据字典,字典的key与fetches中的计算图元素一一对应,并将value赋值给这些张量
    options=None,
    run_metadata=None
)

sess.run(add, feed_dict={a: 2, b: 3}) #将2,3分别赋值给placeholder的a, b,然后执行add加法运算,得到结果
tf.matmul(
    a,
    b,
    transpose_a=False, # 矩阵转置
    transpose_b=False,
    adjoint_a=False, # 共轭矩阵
    adjoint_b=False,
    a_is_sparse=False, # 稀疏矩阵
    b_is_sparse=False,
    name=None
)# 矩阵乘法






代码转载自:https://pan.quark.cn/s/7f503284aed9 Hibernate的核心组件总数达到五个,具体包括:Session、SessionFactory、Transaction、Query以及Configuration。 这五个核心组件在各类开发项目中都具有普遍的应用性。 借助这些组件,不仅可以高效地进行持久化对象的读取与存储,还能够实现事务管理功能。 接下来将通过图形化的方式,逐一阐述这五个核心组件的具体细节。 依据所提供的文件内容,可以总结出以下几个关键知识点:### 1. SSH框架详细架构图尽管标题提及“SSH框架详细架构图”,但在描述部分并未直接呈现关于SSH的详细内容,而是转向介绍了Hibernate的核心接口。 然而,在此我们可以简要概述SSH框架(涵盖Spring、Struts、Hibernate)的核心理念及其在Java开发中的具体作用。 #### Spring框架- **定义**:Spring框架是一个开源架构,其设计目标在于简化企业级应用的开发流程。 - **特点**: - **分层结构**:该框架允许开发者根据实际需求选择性地采纳部分组件,而非强制使用全部功能。 - **可复用性**:Spring框架支持创建可在不同开发环境中重复利用的业务逻辑和数据访问组件。 - **核心构成**: - **核心容器**:该部分包含了Spring框架的基础功能,其核心在于`BeanFactory`,该组件通过工厂模式运作,并借助控制反转(IoC)理念,将配置和依赖管理与具体的应用代码进行有效分离。 - **Spring上下文**:提供一个配置文件,其中整合了诸如JNDI、EJB、邮件服务、国际化支持等企业级服务。 - **Spring AO...
### TensorFlow with Mamba Installation and Usage Guide #### Installing TensorFlow Using Mamba Mamba is a faster, drop-in replacement for conda that provides improved dependency solving speed. For installing TensorFlow using mamba, one can follow these steps to set up an environment specifically tailored for TensorFlow[^1]. To begin the installation process: ```bash mamba create -n tensorflow_env python=3.9 mamba activate tensorflow_env mamba install tensorflow ``` This command sequence creates a new environment named `tensorflow_env` configured with Python version 3.9, activates this environment, then installs TensorFlow within it. For GPU support, replace `tensorflow` with `tensorflow-gpu`. This ensures that all necessary CUDA libraries are installed alongside TensorFlow for optimal performance on compatible hardware configurations. #### Verifying Installation Success After completing the setup procedure, verifying the successful installation of TensorFlow becomes essential before proceeding further into development or experimentation phases. Execute the following code snippet inside any Python interpreter running under the newly created environment: ```python import tensorflow as tf print(tf.__version__) ``` A properly functioning system will output the currently installed TensorFlow version number without raising exceptions during import operations. #### Basic Usage Example Below demonstrates how to construct a simple neural network model utilizing Keras API provided by TensorFlow library after setting everything up correctly according to above instructions: ```python import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense model = Sequential([ Dense(64, activation='relu', input_shape=(784,)), Dense(10, activation='softmax') ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) data = tf.random.normal([1000, 784]) labels = tf.random.uniform([1000], maxval=10, dtype=tf.int32) model.fit(data, labels, epochs=10) ``` The script initializes a two-layer feedforward neural network trained over randomly generated dataset samples meant only for demonstration purposes here. --related questions-- 1. What versions of Python does Mamba officially support? 2. How do I switch between different environments managed via Mamba? 3. Can other machine learning frameworks be similarly integrated through Mamba? 4. Is there documentation available regarding best practices when working with TensorFlow models? 5. Are there specific advantages offered by choosing Mamba over traditional Conda?
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值