zoj 3822 Domination

本文介绍了一个关于放置棋子使棋盘每一行每一列至少有一个棋子的问题,并提供了一种利用动态规划解决该问题的方法。文章详细解释了状态转移方程,并给出了完整的代码实现。

Domination

Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge

Edward is the headmaster of Marjar University. He is enthusiastic about chess and often plays chess with his friends. What's more, he bought a large decorative chessboard with Nrows and M columns.

Every day after work, Edward will place a chess piece on a random empty cell. A few days later, he found the chessboard was dominated by the chess pieces. That means there is at least one chess piece in every row. Also, there is at least one chess piece in every column.

"That's interesting!" Edward said. He wants to know the expectation number of days to make an empty chessboard of N × M dominated. Please write a program to help him.

Input

There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

There are only two integers N and M (1 <= NM <= 50).

Output

For each test case, output the expectation number of days.

Any solution with a relative or absolute error of at most 10-8 will be accepted.

Sample Input
2
1 3
2 2
Sample Output
3.000000000000
2.666666666667

Author: JIANG, Kai


题解及代码:

       比赛的时候,这道题目没写出来。用dp[i][j][k]代表状态为使用k个棋子覆盖i行j列的概率,一开始的时候公式推导错了,实际上应该是下面这样的:

  i==m&&j==n  dp[i][j][k]=(m-i+1)*(n-j+1)*dp[i-1][j-1][k-1]+j*(m-i+1)*1.0*dp[i-1][j][k-1]+i*(n-j+1)*1.0*dp[i][j-1][k-1];dp[i][j][k]/=(m*n-k+1);

  else  dp[i][j][k]=(m-i+1)*(n-j+1)*dp[i-1][j-1][k-1]+j*(m-i+1)*1.0*dp[i-1][j][k-1]+i*(n-j+1)*1.0*dp[i][j-1][k-1]+(i*j-k+1)*1.0*dp[i][j][k-1];dp[i][j][k]/=(m*n-k+1);

        同时比赛的时候也没能想到(i==m&&j==n)的情况要减去蓝色的部分,以为当满足m行n列之后还能继续放棋子。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;

double dp[55][55][2555];

int main()
{
    double base;
    int cas,n,m;
    scanf("%d",&cas);
    while(cas--)
    {
        scanf("%d%d",&m,&n);
        int maxn=n*m;
        memset(dp,0,sizeof(dp));
        dp[0][0][0]=1;
        for(int i=1;i<=m;i++)
        for(int j=1;j<=n;j++)
        {
            for(int k=1;k<=maxn;k++)
            {
                base=(double)(maxn-k+1);
                dp[i][j][k]+=(double)(m-i+1)*(n-j+1)*1.0*dp[i-1][j-1][k-1];
                dp[i][j][k]+=(double)j*(m-i+1)*1.0*dp[i-1][j][k-1];
                dp[i][j][k]+=(double)i*(n-j+1)*1.0*dp[i][j-1][k-1];
                if(i!=m||j!=n)
                dp[i][j][k]+=(double)(i*j-k+1)*1.0*dp[i][j][k-1];
                dp[i][j][k]/=base;
                //printf("dp[%d][%d][%d]:%.6lf\n",i,j,k,dp[i][j][k]);
            }
        }

        double ans=0;
        for(int i=1;i<=maxn;i++)
        {
            ans+=dp[m][n][i]*i;
        }
        printf("%.10lf\n",ans);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值