寻路算法:A*算法介绍

原文:http://theory.stanford.edu/~amitp/GameProgramming/

游戏开发中,较之控制物体移动,寻路算法要复杂得多。例如:


物体初始位于地图下方,目标是地图顶部,如红色线路所示,该物体向上走直至侦测到障碍,改变方向,绕了一个大弯。而理想寻路系统需要类似蓝色所示,通过搜索更广范围以寻找更短路线。

灰色区域是凹陷形状的障碍,可以通过凸包方式使得物体在凸包外移动。如下图,虚拟障碍区域就是凸包区域(图形学对凸包的解释是刚好包围一个物体的凸多边形,此处可引申为曲线)。


如果地图较大路径较长则使用寻路规划,而对于局部区域或短路径使用改进的物体移动算法。

算法

将游戏中的地图转化为计算机中的图,每一个方格是图的顶点,而两个相邻方格之间是通过边连接的,如图所示:

大部分寻路算法是应用于图的,而非网格化的游戏地图。

Dijkstra算法和最好优先搜索(best-first search)

Dijkstra算法简而言之,就是从起始点开始访问其相邻节点,若该相邻点之前未被检测,并将该节点加入待检查节点集合中,使用松弛算法更新待检查节点的路径长度值。只要图不存在负权值的边,Dijkstra算法能够确保找到最短路径。在下图中,粉色的方格为起始点,紫色的方格为目标点,青绿色的方格则为Dijkstra算法所扫描的节点。距离起始点越远,颜色越淡。

贪心最好优先搜索算法对目标点的距离有一个启发值。对于待检查节点集合,该算法不是找距离起始点近的节点,而是选择距离目标点近的节点。该算法并不能保证寻找到最优路径,却能大大提高寻路速度,因其启发式方法引导了路径走向。举例来说,如果目标节点在起始点的南方,那么贪心最好优先搜索算法会将注意力集中在向南的路径上。下图中的黄色节点(颜色较浅节点)指示了具有高启发值的节点(即到目标节点可能开销较大的节点),而黑色(颜色较深节点)则是低启发值的节点(即到目标节点的开销较小的节点)。下图说明相比于Dijkstra算法,贪心最好优先算法能够更加快速地寻路。

考虑前文中曾经提到的凹陷障碍物,Dijkstra算法仍然能够寻找到最短路径:

 

贪心最好优先算法虽然做了较少的计算,但却并不能找到一条较好的路径。

问题在于最好优先搜索算法的贪心属性。由于算法仅考虑从目前节点到最终节点的开销,而忽略之前路径已经付出的开销,因此即使在路径可能错误的情况下仍然要移动物体。

1968年提出的A*算法结合了贪心最好优先搜索算法和Dijsktra算法的优点。A*算法不仅拥有启发式算法的快速,同时能够保证生成确定的最短路径。

A*算法

下面我们主要讨论A*算法。A*十分灵活,能够被应用于各种需要寻路的场景中。

与Dijkstra算法相似的是,A*算法也能保证找到最短路径。同时A*算法也像贪心最好优先搜索算法一样,使用一种启发值对算法进行引导。在刚才的简单寻路问题中,它能够像贪心最好优先搜索算法一样快:

而在后面的具有凹陷障碍物的地图中,A*算法也能够找到与Dijkstra算法所找到的相同的最短路径。

该算法的秘诀在于,它结合了Dijkstra算法使用的节点信息(倾向于距离起点较近的节点),以及贪心最好优先搜索算法的信息(倾向于距离目标较近的节点)。之后在讨论A*算法时,我们使用g(n)表示从起点到任意节点n的路径花费,h(n)表示从节点n到目标节点路径花费的启发值。在上面的图中,黄色体现了节点距离目标较远,而青色体现了节点距离起点较远。A*算法在物体移动的同时平衡这两者的值。定义f(n)=g(n)+h(n),A*算法将每次检测具有最小f(n)值的节点。




标题基于Python的汽车之家网站舆情分析系统研究AI更换标题第1章引言阐述汽车之家网站舆情分析的研究背景、意义、国内外研究现状、论文方法及创新点。1.1研究背景与意义说明汽车之家网站舆情分析对汽车行业及消费者的重要性。1.2国内外研究现状概述国内外在汽车舆情分析领域的研究进展与成果。1.3论文方法及创新点介绍本文采用的研究方法及相较于前人的创新之处。第2章相关理论总结和评述舆情分析、Python编程及网络爬虫相关理论。2.1舆情分析理论阐述舆情分析的基本概念、流程及关键技术。2.2Python编程基础介绍Python语言特点及其在数据分析中的应用。2.3网络爬虫技术说明网络爬虫的原理及在舆情数据收集中的应用。第3章系统设计详细描述基于Python的汽车之家网站舆情分析系统的设计方案。3.1系统架构设计给出系统的整体架构,包括数据收集、处理、分析及展示模块。3.2数据收集模块设计介绍如何利用网络爬虫技术收集汽车之家网站的舆情数据。3.3数据处理与分析模块设计阐述数据处理流程及舆情分析算法的选择与实现。第4章系统实现与测试介绍系统的实现过程及测试方法,确保系统稳定可靠。4.1系统实现环境列出系统实现所需的软件、硬件环境及开发工具。4.2系统实现过程详细描述系统各模块的实现步骤及代码实现细节。4.3系统测试方法介绍系统测试的方法、测试用例及测试结果分析。第5章研究结果与分析呈现系统运行结果,分析舆情数据,提出见解。5.1舆情数据可视化展示通过图表等形式展示舆情数据的分布、趋势等特征。5.2舆情分析结果解读对舆情分析结果进行解读,提出对汽车行业的见解。5.3对比方法分析将本系统与其他舆情分析系统进行对比,分析优劣。第6章结论与展望总结研究成果,提出未来研究方向。6.1研究结论概括本文的主要研究成果及对汽车之家网站舆情分析的贡献。6.2展望指出系统存在的不足及未来改进方向,展望舆情
【磁场】扩展卡尔曼滤波器用于利用高斯过程回归进行磁场SLAM研究(Matlab代码实现)内容概要:本文介绍了利用扩展卡尔曼滤波器(EKF)结合高斯过程回归(GPR)进行磁场辅助的SLAM(同步定位与地图构建)研究,并提供了完整的Matlab代码实现。该方法通过高斯过程回归对磁场空间进行建模,有效捕捉磁场分布的非线性特征,同时利用扩展卡尔曼滤波器融合传感器数据,实现移动机器人在复杂环境中的精确定位与地图构建。研究重点在于提升室内等无GPS环境下定位系统的精度与鲁棒性,尤其适用于磁场特征明显的场景。文中详细阐述了算法原理、数学模型构建、状态估计流程及仿真实验设计。; 适合人群:具备一定Matlab编程基础,熟悉机器人感知、导航或状态估计相关理论的研究生、科研人员及从事SLAM算法开发的工程师。; 使用场景及目标:①应用于室内机器人、AGV等在缺乏GPS信号环境下的高精度定位与地图构建;②为磁场SLAM系统的设计与优化提供算法参考和技术验证平台;③帮助研究人员深入理解EKF与GPR在非线性系统中的融合机制及实际应用方法。; 阅读建议:建议读者结合Matlab代码逐模块分析算法实现细节,重点关注高斯过程回归的训练与预测过程以及EKF的状态更新逻辑,可通过替换实际磁场数据进行实验验证,进一步拓展至多源传感器融合场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值