# -*- encoding:utf-8 -*-
# A = [1, 1, 2, 2, 2, 2]
# target = 5
from __future__ import print_function
def main(A, target):
count = 0
num = len(A)
hash1 = dict()
for indx_i in range(num):
if A[indx_i] in hash1:
hash1[A[indx_i]] += 1
else:
hash1[A[indx_i]] = 1
#print("hash table: ", hash1)
keys = list(hash1.keys())
for indx_i in range(len(keys)):
i = keys[indx_i]
if hash1.get(i) > 2 and i + i + i == target:
count_delta = (hash1.get(i - 2) * hash1.get(i - 1) * hash1.get(i)) / 6
count += count_delta
print ("+", i, i, i, ":", count_delta)
for indx_j in range(indx_i + 1, len(keys)):
j = keys[indx_j]
if hash1.get(i) > 1 and i + i + j == target:
count_delta = (hash1.get(i) * (hash1.get(i) - 1) * hash1.get(j)) / 2
count += count_delta
print ("+", i, i, j, ":", count_delta)
if hash1.get(j) > 1 and i + j + j == target:
count_delta = (hash1.get(i) * hash1.get(j) * (hash1.get(j) - 1)) / 2
count += count_delta
print ("+", i, j, j, ":", count_delta)
for indx_k in range(indx_j + 1, len(keys)):
k = keys[indx_k]
if i + j + k == target:
count_delta = hash1.get(i) * hash1.get(j) * hash1.get(k)
count += count_delta
print ("+",i, j, k, ":", count_delta)
return count
if __name__ == '__main__':
result = main(A=[1, 1, 2, 2, 2, 2, 3, 3], target=5)
print("result:", result)
编程题-三数求和
数组中寻找三数之和为特定目标的组合
最新推荐文章于 2022-10-27 19:14:53 发布
本文介绍了一种算法,用于在给定数组中寻找三个数的组合,其和等于特定目标值。该算法首先构建哈希表统计数组中各元素的出现次数,然后通过遍历不同元素的组合来计算满足条件的组合数量。文章详细解释了算法的实现过程,并提供了一个具体的代码示例。
部署运行你感兴趣的模型镜像
您可能感兴趣的与本文相关的镜像
Stable-Diffusion-3.5
图片生成
Stable-Diffusion
Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率
5731

被折叠的 条评论
为什么被折叠?



