YOLOv1 模型构建与训练

本文详细介绍了如何基于YOLOv1构建模型,选择ResNet替换原论文方案以提高训练速度,并分享了模型训练过程,包括使用TensorFlow的分段衰退方法和自定义的学习率衰减策略。

相关文章

项目地址:YOLOv1 VOC 2007

笔者训练的权重地址:阿里云盘分享

10 秒文章速览

本文主要讲解了 YOLOv1 的模型构建、模型训练

模型构建

对于模型的构建,我们不采用论文中的方案,而是使用 ResNet 模型。至于为什么,在笔者的观测下,ResNet练的训练速度明显更快

YOLOv1 模型

但在这里笔者还是贴出论文中的模型,向前辈致敬🫡

# 根据原论文构建的模型
def get_YOLOv1():
    model = keras.Sequential([
        keras.layers.Conv2D(64, (7, 7), 2, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.MaxPool2D((2, 2), 2),

        keras.layers.Conv2D(192, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.MaxPool2D((2, 2), 2),

        keras.layers.Conv2D(128, (1, 1), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(256, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(256, (1, 1), 1, 'same'),
        keras.layers.LeakyReLU(0.1
【资源说明】 【博主环境】 *可以在此检测项目基础上增加计数功能,统计当前画面目标总数,或者增加追踪功能,实现追踪计数! python==3.8 pytorch==1.8.1 torchvision==0.9.1 1、搭建环境 建议在anaconda中新建虚拟环境配置,然后在pycharm打开工程,再导入anaconda环境 确保正确安装requirements.txt中的包,可用清华源,下载块! 2、训练好的模型+评估指标曲线+数据集可视化图存放在“ultralytics\yolo\v8\detect\runs\detect”文件夹 3、开始检测识别 a.打开predict.py修改34行模型路径,照葫芦画瓢修改; b.需要检测的图片或视频预先存放在“\ultralytics\assets”文件夹 c.运行predict.py,开始检测。检测结果会保存在ultralytics/yolo/v8/detect/runs/detect文件夹下 4、训练自己的模型 a.准备数据集,可参考YOLOv5,拆分为train、val即可,标签为txt b.在yolo\v8\detect\data文件夹下新建.yaml文件,照葫芦画瓢,仿照coco128.yaml c.修改tarin.py中的238行,改成自己新建yaml的路径 d.GPU训练(注释掉241行,修改device参数为0),若CPU训练(注释掉242行即可) e.运行train.py开始训练,当精度不在增加时,会自动停止训练模型保存在ultralytics\yolo\v8\detect\runs\detect文件夹 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,也适用于小白学习入门进阶。当然也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或者热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载,沟通交流,互相学习,共同进步!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

余将董道而不豫兮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值