医学机器学习:数据预处理、超参数调优与模型比较的实用分析

摘要

本文介绍了医学中的机器学习,重点阐述了数据预处理、超参数调优和模型比较的技术。在数据预处理方面,包括数据收集与整理、处理缺失值、特征工程等内容,以确保数据质量和可用性。超参数调优对模型性能至关重要,介绍了多种调优方法及其优缺点和适用场景。模型比较在医学领域具有重要意义,通过比较不同模型可选择最适合特定任务的模型,提高诊断准确性和治疗有效性。最后对医学机器学习的未来发展进行了展望。

关键词

医学机器学习;数据预处理;超参数调优;模型比较

ABSTRACT

This paper introduces machine learning in medicine, focusing on the techniques of data preprocessing, hyperparameter tuning, and model comparison. In terms of data preprocessing, it includes data collection and collation, handling missing valu

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Allen_Lyb

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值