架构师之路(十六)计算机网络(传输层)

前置知识(了解):计算机基础。

作为架构师,我们所设计的系统很少为单机系统,因此有必要了解计算机计算机之间是怎么联系的。局域网的集群和混合云的网络有啥区别。系统交互的时候网络会存在什么瓶颈。

既然网络层已经能把源主机上发出的数据传送给目的主机,那么为什么还需要加上一个传输层呢?这就需要我们理解主机用户应用层通信的主体,位于两台网络主机中真正的数据通信主体并不是这两台主机,而是两台主机中的各种网络应用进程。同一时间一台主机上可能有多个进程同时运行,这时候就需要为应用程序提供一个标识,那就是端口.而传输层就是为了提供这种端到端的服务而存在的.

端口分为知名端口和动态端口。有些网络服务会使用固定的端口,这类端口称为知名端口,端口号范围为0~1023。比如:FTP,HTTP,Telnet,SNMP服务均使用知名端口。

动态端口范围1024~65535,这些端口号一般不会固定分配给某个服务,也就是说许多服务都可以使用这些端口。只要运行的程序向系统提出访问网络的申请,那么系统就可以从这些端口号中分配一个供该程序使用。

运输层是只有主机才有的层次,传输层使用网络层的服务为应用层提供通信服务。传输层定义了主机应用程序之间端到端的连通性。传输层中最为常见的两个协议分别是传输控制协议TCP(Transmission Control Protocol)和用户数据报协议UDP(User Datagram Protocol)

目录

UDP协议

TCP协议

可靠传输

流量控制

拥塞控制

连接管理


UDP协议

UDP是一种面向无连接的传输层协议,传输可靠性没有保证。udp只在ip数据报服务之上增加了很少功能,即复用分用和差错检测功能

udp的主要特点

1.udp是无连接的,减少开销和发送数据之前的时延

2.udp使用最大努力交付,即不保证可靠交付

3.udp是面向报文的,适合一次性传输少量数据的网络应用

4.udp无拥塞控制,适合很多实时应用

5.udp首部开销小,8B,tcp20B

主机A发送数据包时,这些数据包是以有序的方式发送到网络中的,每个数据包独立地在网络中被发送,所以不同的数据包可能会通过不同的网路径叨叨主机B。这样的情况下,先发送的数据包不一定先到达主机B。因为UDP数据包没有序号,主机B将无法通过UDP协议将数据包按照原来的顺序重新组合,所以此时需要应用程序提供报文的到达确认,排序和流量控制等功能(也就是说UDP报文的到达确认,排序和流量控制是应用程序来确定的)。通常情况下,UDP采用实时传输机制和时间戳来传输语音和视频数据。

TCP协议

TCP是一种面向连接的端到端协议。TCP作为传输控制协议,可以为主机提供可靠的数据传输。TCP需要依赖网络协议为主机提供可用的传输路径。TCP允许一个主机同事运行多个应用进程。每台主机可以拥有多个应用端口,每对端口号,源和目标IP地址的组合唯一地标识了一个会话。

可靠传输

ARQ协议,即自动重传请求(Automatic Repeat-reQuest),是OSI模型中数据链路层和传输层的错误纠正协议之一。它通过使用确认和超时这两个机制,在不可靠服务的基础上实现可靠的信息传输。如果发送方在发送后一段时间之内没有收到确认帧,它通常会重新发送。 ARQ包括停止等待ARQ协议和连续ARQ协议,拥有错误检测(Error Detection)、正面确认(Positive Acknowledgment)、超时重传(Retransmission after Timeout)和 负面确认及重传(Negative Acknowledgment and Retransmission)等机制。

由于停止等待ARQ协议信道利用率太低,所以需要使用连续ARQ协议来进行改善。这个协议会连续发送一组数据包,然后再等待这些数据包的ACK。发送方采用流水线传输。流水线传输就是发送方可以连续发送多个分组,不必每发完一个分组就停下来等待对方确认。如下图所示:

连续ARQ协议通常是结合滑动窗口协议来使用的,发送方需要维持一个发送窗口,如下图所示:

已经博主授权,源码转载自 https://pan.quark.cn/s/a4b39357ea24 常见问题解答 网页打开速度慢或者打不开网页? 受到多种因素的影响,对于非会员用户我们无法提供最优质的服务。 如果您希望得到最棒的体验,请至大会员页面("右上角菜单 → 大会员")根据说明操作。 请注意:受制于国际网络的诸多不确定性,我们无法对任何服务的可靠性做出任何保证。 如果出现了网络连接相关的问题,我们建议您先等待一段时间,之后再重试。 如果您在重试后发现问题仍然存在,请联系我们,并说明网络问题持续的时间。 图片下载后无法找到? 打开"右上角菜单 → 更多 → 修改下载路径",在弹出的对话框中可以看到当前图片的保存路径。 此外,由于网络因素,在保存图片之后,等待屏幕下方出现"已保存到..."后,才能在本地找到图片。 如何更改图片保存的目录? 请参见"右上角菜单 → 更多 → 修改下载路径"。 翻页不方便? 在点进某个图片后,通过在图片上向左或向右滑动,即可翻页查看下一个作品。 如何保存原图/导出动图? 长按图片/动图,在弹出的菜单中选择保存/导出即可。 输入账号密码后出现"进行人机身份验证"? 此为pixiv登陆时的验证码,请按照要求点击方框或图片。 在pxvr中注册pixiv账号后,收到验证邮件,无法访问邮件中的验证链接? 请复制邮件中的链接,打开pxvr中的"右上角菜单 → 输入地址"进行访问。 能否自动将页面内容翻译为汉语? 很抱歉,pxvr暂不提供语言翻译服务。 图片下载类型是否可以选择? 能否批量下载/批量管理下载? 已支持批量下载多图作品中的所有原图:找到一个多图作品,进入详情页面后,点击图片进入多图浏览模式,长按任意一张图片即可看到批量下载选项。 关于上述其他功能,我们...
考虑局部遮阴的光伏PSO-MPPT控制模型(Simulink仿真实现)内容概要:本文介绍了基于Simulink仿真实现的考虑局部遮阴的光伏PSO-MPPT控制模型,旨在通过粒子群优化(PSO)算法解决光伏发电系统在局部阴影条件下最大功率点跟踪(MPPT)的效率问题。文档不仅提供了该模型的技术实现方法,还列举了大量相关的MATLAB/Simulink仿真资源,涵盖电力系统、智能优化算法、机器学习、路径规划、信号处理等多个科研方向,适用于复现高水平期刊论文和开展创新性研究。文中强调科研需逻辑缜密、善于借力,并提倡结合实际仿真与理论分析以提升研究深度。 适合人群:具备一定电力电子、自动控制或新能源背景,熟悉MATLAB/Simulink环境,从事光伏系统优化、智能算法应用或相关领域研究的研发人员及硕博研究生。 使用场景及目标:①研究局部遮阴下光伏系统MPPT控制策略的性能提升;②利用PSO等智能优化算法解决非线性、多峰值优化问题;③复现SCI/EI级别论文中的MPPT控制模型;④开展光伏系统建模与仿真教学或项目开发。 阅读建议:建议读者结合文档提供的网盘资源,下载完整代码与模型文件,按照目录顺序逐步学习,重点理解PSO算法在MPPT中的应用机制,并通过修改参数、对比实验等方式深入掌握仿真细节,提升工程实践与科研创新能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

架构师虎哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值