15.flink的使用scala steaming wordcount的使用

同步输出 按空格切分

 

 

源码:

 

import org.apache.flink.api.java.utils.ParameterTool
import org.apache.flink.api.scala._
import org.apache.flink.streaming.api.scala.{DataStream, StreamExecutionEnvironment}

object StreamWordCount1 {
  def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    // 接收socket文本流
    val textDstream: DataStream[String] = env.socketTextStream("192.168.50.170", 9999)

    // flatMap和Map需要引用的隐式转换
    val dataStream: DataStream[(String, Int)] = textDstream.flatMap(_.split("\\s")).filter(_.nonEmpty).map((_, 1)).keyBy(0).sum(1)

    dataStream.print().setParallelism(1)

    // 启动executor,执行任务
    env.execute("Socket stream word count")
  }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值