多输入多输出 | Matlab实现BO-GRU贝叶斯优化门控循环单元多输入多输出预测

多输入多输出 | Matlab实现BO-GRU贝叶斯优化门控循环单元多输入多输出预测

预测效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

Matlab实现BO-GRU贝叶斯优化门控循环单元多输入多输出预测(完整源码和数据)

1.data为数据集,输入10个特征,输出3个变量。

2.main.m为程序主文件,其他为函数文件无需运行。

3.命令窗口输出MBE、MAE、RMSE、R^2和MAPE,可在下载区获取数据和程序内容。

4.优化参数为学习率、隐藏层单元数和正则化参数。

注意程序和数据放在一个文件夹,运行环境为Matlab2020及以上。
在这里插入图片描述

程序设计

  • 完整源码和数据获取方式:私信博主回复Matlab实现BO-GRU贝叶斯优化门控循环单元多输入多输出预测


%%  数据平铺
%   将数据平铺成1维数据只是一种处理方式
%   也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
%   但是应该始终和输入层数据结构保持一致
p_train =  double(reshape(P_train, 10, 1, 1, M));
p_test  =  double(reshape(P_test , 10, 1, 1, N));
t_train =  double(T_train)';
t_test  =  double(T_test )';
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


%%  参数设置
options = trainingOptions('adam', ...      % ADAM 梯度下降算法
    'MiniBatchSize', 30, ...               % 批大小,每次训练样本个数30
    'MaxEpochs', 100, ...                  % 最大训练次数 100
    'InitialLearnRate', 1e-2, ...          % 初始学习率为0.01
    'LearnRateSchedule', 'piecewise', ...  % 学习率下降
    'LearnRateDropFactor', 0.5, ...        % 学习率下降因子
    'LearnRateDropPeriod', 50, ...         % 经过100次训练后 学习率为 0.01 * 0.5
    'Shuffle', 'every-epoch', ...          % 每次训练打乱数据集
    'Plots', 'training-progress', ...      % 画出曲线
    'Verbose', false);

参考资料

[1] https://blog.youkuaiyun.com/kjm13182345320/category_11003178.html?spm=1001.2014.3001.5482
[2] https://blog.youkuaiyun.com/kjm13182345320/article/details/117378431
[3] https://blog.youkuaiyun.com/kjm13182345320/article/details/118253644

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器学习之心

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值