【Python自动化Excel】pandas子集选取的三种方法:[]、.loc[]、.iloc[]

pandas读取Excel、csv文件中的数据时,得到的大多是表格型的二维数据,在pandas中对应的即为DataFrame数据结构。在处理这类数据时,往往要根据据需求先获取数据中的子集,如某些列、某些行、行列交叉的部分等。可以说子集选取是一个非常基础、频繁使用的操作,而DataFrame的子集选取看似简单却有一定复杂性。本文聚焦DataFrame的子集选取操作逻辑,力求在实战中遇到子集选取操作的需求时"不迷路"。

主目录

一、图解DataFrame

DataFrame是一种二维的表格型数据结构,每一行/列都有对应的标签位置序号。行列标签、位置序号的对应关系如下图所示:

图解DataFrame行列标签、位置序号

  • 列标签(也叫列名:columns)
  • 行标签(也叫行索引:index)默认为(0, 1, 2, …, n)。这里与位置序号恰好一致。

针对DataFrame的数据结构,pandas提供了三种获取子集的索引器:[].loc[].iloc[]

  • df[]:快捷的整行整列选取

  • df.loc[]:按标签的行列交叉选取

  • df.iloc[]:按位置序号的行列交叉选取

二、整行整列选取:df[]

1df['列标签'],选取单个整列
# 选取“日期”列
df['日期']

2df[标签列表],选取多个整列
# 选取“最高温”,“最低温”,“风力风向”三列
df[['最高温','最低温','风力风向']]

3df[切片],选取整行
# 选取行索引值1、2、3的整行。切片左闭右开
df[1:4]

切片语法也支持字符串的索引标签值,如将"日期"列修改为行索引(index)

df1 = df.set_index("日期")

# 下面两个切片选取的行是一样的
df1[1
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值