质数筛
#include <iostream>
using namespace std;
const int N = 1e6+10;
int prime[N], cnt;
bool st[N];
//朴素筛法-O(nlogn)
void get_primes(int x) {
for(int i = 2; i <= n; i++) {
if(!st[i]) prime[cnt++] = i;
for(int j = i+i; j <= n; j += i)
st[j] = true;
}
}
//埃式筛法-O(nloglogn)
void get_primes(int n) {
for(int i = 2; i <= n; i++) {
if(!st[i]){
prime[cnt++] = i;
for(int j = i; j <= n; j += i)
st[j] = true;
}
}
}
//线性筛法-O(n), n = 1e7的时候基本就比埃式筛法快一倍了
//算法核心:x仅会被其最小质因子筛去
void get_prime(int x) {
for(int i = 2; i <= x; i++) {
if(!st[i]) prime[cnt++] = i;
for(int j = 0; prime[j] <= x / i; j++) {
//对于任意一个合数x,假设pj为x最小质因子,当i<x/pj时,一定会被筛掉
st[prime[j]*i] = true;
if(i % prime[j] == 0) break;
/*
1.i%pj == 0, pj定为i最小质因子,pj也定为pj*i最小质因子
2.i%pj != 0, pj定小于i的所有质因子,所以pj也为pj*i最小质因子
*/
}
}
}
int main() {
int x;
scanf("%d".&x);
get_primes(x);
printf("%d",cnt);
return 0;
}
试除法求约数
#include<stdio.h>
#define N 100010
int main()
{
int t;
scanf("%d",&t);
while(t --)
{
int n;
int a[N], b[N], cnta = 0, cntb = 0;
scanf("%d",&n);
for(int i = 1; i <= n / i; i ++)
{
if(n % i == 0)
{
a[cnta++] = i;
if(i < n / i)
b[cntb++] = n / i;
}
}
for(int i = 0 ; i < cnta; i ++) printf("%d ",a[i]);
for(int i = cntb - 1; i >= 0; i --) printf("%d ",b[i]);
printf("\n");
}
return 0;
}
约数的个数

#include <iostream>
#include <algorithm>
#include <unordered_map>
#include <vector>
using namespace std;
typedef long long LL;
const int N = 110, mod = 1e9 + 7;
int main()
{
int n;
cin >> n;
unordered_map<int, int> primes;
while (n -- )
{
int x;
cin >> x;
for (int i = 2; i <= x / i; i ++ )
while (x % i == 0)
{
x /= i;
primes[i] ++ ;
}
if (x > 1) primes[x] ++ ;
}
LL res = 1;
for (auto p : primes) res = res * (p.second + 1) % mod;
cout << res << endl;
return 0;
#include <iostream>
#include <algorithm>
#include <unordered_map>
#include <vector>
using namespace std;
typedef long long LL;
const int N = 110, mod = 1e9 + 7;
int main()
{
int n;
cin >> n;
unordered_map<int, int> primes;
while (n -- )
{
int x;
cin >> x;
for (int i = 2; i <= x / i; i ++ )
while (x % i == 0)
{
x /= i;
primes[i] ++ ;
}
if (x > 1) primes[x] ++ ;
}
LL res = 1;
for (auto p : primes) res = res * (p.second + 1) % mod;
cout << res << endl;
return 0;
最大公约数
#include <iostream>
#include <algorithm>
using namespace std;
int gcd(int a, int b)
{
return b ? gcd(b, a % b) : a;
}
int main()
{
int n;
cin >> n;
while (n -- )
{
int a, b;
scanf("%d%d", &a, &b);
printf("%d\n", gcd(a, b));
}
return 0;
}
欧拉函数

#include <iostream>
using namespace std;
int phi(int x)
{
int res = x;
for (int i = 2; i <= x / i; i ++ )
if (x % i == 0)
{
res = res / i * (i - 1);
while (x % i == 0) x /= i;
}
if (x > 1) res = res / x * (x - 1);
return res;
}
int main()
{
int n;
cin >> n;
while (n -- )
{
int x;
scanf("%d",&x);
printf("%d",phi(x));
}
return 0;
}
筛法求欧拉函数
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N = 1000010;
int primes[N], cnt;
int phi[N];
bool st[N];
void get_eulers(int n)
{
phi[1] = 1;
for (int i = 2; i <= n; i++)
{
if (!st[i])
{
primes[cnt++] = i;
phi[i] = i - 1;
}
for (int j = 0; primes[j] <= n / i; j++)
{
st[primes[j] * i] = true;
if (i % primes[j] == 0)
{
phi[primes[j] * i] = phi[i] * primes[j];
break;
}
phi[primes[j] * i] = phi[i] * (primes[j] - 1);
}
}
}
int main()
{
int n;
cin >> n;
get_eulers(n);
LL res = 0;
for (int i = 1; i <= n; i++) res += phi[i];
printf("%lld\n", res);
return 0;
}
代码解释:
质数ii的欧拉函数即为phi[i] = i - 1:1 ~ i−1i−1均与ii互质,共i−1i−1个。
phi[primes[j] * i]分为两种情况:
① i % primes[j] == 0时:primes[j]是i的最小质因子,也是primes[j] * i的最小质因子,因此1 - 1 / primes[j]这一项在phi[i]中计算过了,只需将基数NN修正为primes[j]倍,最终结果为phi[i] * primes[j]。
② i % primes[j] != 0:primes[j]不是i的质因子,只是primes[j] * i的最小质因子,因此不仅需要将基数NN修正为primes[j]倍,还需要补上1 - 1 / primes[j]这一项,因此最终结果phi[i] * (primes[j] - 1)。
快速幂
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
LL qmi(int a, int b, int p)
{
LL res = 1 % p;
while (b)
{
if (b & 1) res = res * a % p;
a = a * (LL)a % p;
b >>= 1;
}
return res;
}
int main()
{
int n;
scanf("%d", &n);
while (n -- )
{
int a, b, p;
scanf("%d%d%d", &a, &b, &p);
printf("%lld\n", qmi(a, b, p));
}
return 0;
}
1145

被折叠的 条评论
为什么被折叠?



