【学习笔记】数理统计习题一

本文详细解答了数理统计中的多个问题,涉及概率论的基础概念,如独立事件、生日悖论、概率计算、随机变量的性质等。通过具体的习题解析,探讨了随机变量的独立性、相关性及其概率分布,如二项分布、正态分布等,并利用特征函数和切比雪夫不等式进行深入讨论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Q1: The planet Tralfamadore has years with 500 days. There are 5 Tralfamadorans in the room. Write an expression for the probability that no two of them have the same birthday.

Solution: Suppose that there are n Tralfamadorans in the room. The probability that no two of them have the same birthday is given by
p(n):={ A500n500n,n≤5000,n>500 p(n):= \begin{cases} \frac{A_{500}^n}{500^n}, & n\leq500\\ 0,&n>500 \end{cases} p(n):={ 500nA500n,0,n500n>500
When n=5n=5n=5, we have p(5)=A5005/5005≈0.9801p(5)=A_{500}^5/500^5\approx0.9801p(5)=A5005/50050.9801

How would you find the smallest nnn for which a room of nnn Tralfamadorans has probability at least 1/21/21/2 of having two members with the same birthday?

Solution: nnn要满足的条件为
1−500!(500−n)!500n≥12 1-\frac{500!}{(500-n)!500^n}\geq\frac{1}{2} 1(500n)!500n500!21

500!(500−n)!500n≤12 \frac{500!}{(500-n)!500^n}\leq\frac{1}{2} (500n)!500n500!21
可计算得nnn的最小值为27

The above two questions really require some sort of assumption to get an answer. In case you did not already provide one, what is the customary assumption one uses in probability exercises?

Solution: The birthdays of the nnn Tralfamadorans are independent and uniformly distributed over the 500 days.

Q2: Write an expression for ϕX(t)\phi_X(t)ϕX(t), the moment generating function (MGF) of a random variable X. Find and interpret the second derivative ϕ′′X(0)\phi{''}_X(0)ϕX(0). If the MGF does not exist what would we use instead?

Solution:
ϕx(t)=∫−∞+∞etxdF(x) \phi_x(t)=\displaystyle\int_{-\infty}^{+\infty}e^{tx}dF(x) ϕx(t)=+etxdF(x)

ϕx′′(0)=∫−∞+∞x2etxdF(x)∣t=0=Ex2 \phi_x^{''}(0)=\displaystyle\int_{-\infty}^{+\infty}x^2e^{tx}dF(x)|_{t=0}=Ex^2 ϕx(0)=+x2etxdF(x)t=0=Ex2

​ 用特征函数表示
ϕx′′(0)=Ex2=−f2(0) \phi_x^{''}(0)=Ex^2=-f^{2}(0) ϕx(0)=Ex2=f2(0)

Q3: If XXX and YYY are uncorrelated random variables must they be independent?If XXX and YYY are independent random variables must they be uncorrelated?Explain in both cases.

Solution: 如果XXXYYY是不相关的随机变量,它们不一定是独立的,比如说,存在一个简单的例子,

X \ Y -1 0 1
0 0 1/3 0
1 1/3 0 1/3

从表格中可以得知,Eξ=0E\xi=0Eξ=0, Eη=Eξ2=23E\eta=E\xi^2=\frac{2}{3}Eη=Eξ2=32, Eξη=Eξ3=0E\xi\eta=E\xi^3=0Eξη=Eξ3=0,故cov(ξ,η)=Eξη−Eξ⋅Eη=0cov(\xi,\eta)=E\xi\eta-E\xi{\cdot}E\eta=0cov(ξ,η)=EξηEξEη=0,所以ξ\xiξη\eta

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值