Regression Models QUIZ 2

it s the quiz from the Regression Models course .

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9


 

Q1

Consider the following data with x as the predictor and y as as the outcome.

x <- c(0.61, 0.93, 0.83, 0.35, 0.54, 0.16, 0.91, 0.62, 0.62)

y <- c(0.67, 0.84, 0.6, 0.18, 0.85, 0.47, 1.1, 0.65, 0.36)

Give a P-value for the two sided hypothesis test of whether \beta_1β1  from a linear regression model is 0 or not.

>summary(lm(y ~ x))$coef

##             Estimate Std. Error t value Pr(>|t|)
## (Intercept)   0.1885     0.2061  0.9143  0.39098
## x             0.7224     0.3107  2.3255  0.05296

Q2

Consider the previous problem, give the estimate of the residual standard deviation.

>summary(lm(y ~ x))$sigma

## [1] 0.223

 

Q3

In the \verb|mtcars|mtcars data set, fit a linear regression model of weight (predictor) on mpg (outcome). Get a 95% confidence interval for the expected mpg at the average weight. What is the lower endpoint?

data(mtcars)
fit <- lm(mpg ~ I(wt - mean(wt)), data = mtcars)
confint(fit)

##                   2.5 % 97.5 %
## (Intercept)      18.991 21.190
## I(wt - mean(wt)) -6.486 -4.203

 

Q4

Refer to the previous question. Read the help file for mtcars. What is the weight coefficient interpreted as?

  • The estimated expected change in mpg per 1 lb increase in weight.
  • The estimated 1,000 lb change in weight per 1 mpg increase.
  • The estimated expected change in mpg per 1,000 lb increase in weight. (Correct )
    This is the standard interpretation of a regression coefficient. The expected change in the response per unit change in the predictor.

     

  • It can't be interpreted without further information

Q5

Consider again the \verb|mtcars|mtcars data set and a linear regression model with mpg as predicted by weight (1,000 lbs). A new car is coming weighing 3000 pounds. Construct a 95% prediction interval for its mpg. What is the upper endpoint?

>fit <- lm(mpg ~ wt, data = mtcars)
>predict(fit, newdata = data.frame(wt = 3), interval = "prediction")

##     fit   lwr   upr
## 1 21.25 14.93 27.57

Q6

Consider again the \verb|mtcars|mtcars data set and a linear regression model with mpg as predicted by weight (in 1,000 lbs). A “short” ton is defined as 2,000 lbs. Construct a 95% confidence interval for the expected change in mpg per 1 short ton increase in weight. Give the lower endpoint.

>fit <- lm(mpg ~ wt, data = mtcars)
>confint(fit)[2, ] * 2

##   2.5 %  97.5 % 
## -12.973  -8.405

## Or equivalently change the units

>fit <- lm(mpg ~ I(wt * 0.5), data = mtcars)
>confint(fit)[2, ]

##   2.5 %  97.5 % 
## -12.973  -8.405


Q7

If my X from a linear regression is measured in centimeters and I convert it to meters what would happen to the slope coefficient?

  • It would get divided by 10
  • It would get multiplied by 10
  • It would get divided by 100
  • It would get multiplied by 100.    <Correct > (It would get multiplied by 100.)

Q8

I have an outcome, Y, and a predictor, X and fit a linear regression model with Y = \beta_0 + \beta_1 X + \epsilonY=β0 +β1 X+ϵ to obtain \hat \beta_0β^ 0  and \hat \beta_1β^ 1 . What would be the consequence to the subsequent slope and intercept if I were to refit the model with a new regressor, X + cX+c for some  constant,C?

  • The new intercept would be \hat \beta_0 + c \hat \beta_1β^ 0 +cβ^ 1
  • The new intercept would be \hat \beta_0 - c \hat \beta_1β^ 0 −cβ^ 1 :Correct 
  • This is exactly covered in the notes. But note that if Y = \beta_0 + \beta_1 X + \epsilonY=β0​+β1​X+ϵ then Y = \beta_0 - c\beta_1 + \beta_1 (X + c) + \epsilonY=β0​−cβ1​+β1​(X+c)+ϵ so that the answer is that the intercept gets subtracted by c\beta_1cβ1​
  • The new slope would be c \hat \beta_1cβ^ 1
  • The new slope would be \hat \beta_1 + cβ^ 1 +c

Q9

Refer back to the mtcars data set with mpg as an outcome and weight (wt) as the predictor. About what is the ratio of the the sum of the squared errors, \sum_{i=1}^n (Y_i - \hat Y_i)^2∑i=1n (Yi −Y^i )2 when comparing a model with just an intercept (denominator) to the model with the intercept and slope (numerator)?

>fit1 <- lm(mpg ~ wt, data = mtcars)
>fit2 <- lm(mpg ~ 1, data = mtcars)
>1 - summary(fit1)$r.squared

## [1] 0.2472

>sse1 <- sum((predict(fit1) - mtcars$mpg)^2)
>sse2 <- sum((predict(fit2) - mtcars$mpg)^2)
>sse1/sse2

## [1] 0.2472

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值