gan train real_test

zong

948

9960
2052
1108
927
1613
4010
13525
864
1738
1663
2732
463
9
842
207
9
10
1179
3019
142
3811
1654
17896
0
3570
0
1365
0
1538
1699

1956


prob


0.493670886075949
0.957028112449799
0.329922027290448
0.500000000000000
0.459546925566343
0.402355858648481
0.985536159600998
0.978853974121996
0.990740740740741
0.428653624856157
0.324113048707156
0.991215226939971
0.468682505399568
0.444444444444444
0.612826603325416
0.463768115942029
0.444444444444444
0.300000000000000
0.308736217133164
0.941702550513415
0.190140845070423
0.981107320913146
0.287787182587666
0.978151542244077
NaN
0.641176470588235
NaN
0.437362637362637
NaN
0.342002600780234
0.708063566804002
0.355828220858896

error

468
9532
677
554
426
649
3952
13239
856
745
539
2708
217
4
516
96
4
3
364
2843
27
3739
476
17505
0
2289
0
597
0
526
1203
696



以下是使用GAN算法进行异常检测的Python代码示例: 首先,我们需要定义生成器和判别器模型: ```python from keras.layers import Input, Dense, Dropout from keras.models import Model def build_generator(latent_dim, output_dim): input_layer = Input(shape=(latent_dim,)) x = Dense(128, activation='relu')(input_layer) x = Dense(256, activation='relu')(x) x = Dense(512, activation='relu')(x) x = Dense(output_dim, activation='sigmoid')(x) generator = Model(inputs=input_layer, outputs=x) return generator def build_discriminator(input_dim): input_layer = Input(shape=(input_dim,)) x = Dense(512, activation='relu')(input_layer) x = Dropout(0.2)(x) x = Dense(256, activation='relu')(x) x = Dropout(0.2)(x) x = Dense(128, activation='relu')(x) x = Dropout(0.2)(x) x = Dense(1, activation='sigmoid')(x) discriminator = Model(inputs=input_layer, outputs=x) return discriminator ``` 然后,我们可以使用生成器和判别器模型来构建GAN模型: ```python from keras.optimizers import Adam def build_gan(generator, discriminator): discriminator.trainable = False gan_input_layer = Input(shape=(latent_dim,)) x = generator(gan_input_layer) gan_output = discriminator(x) gan = Model(inputs=gan_input_layer, outputs=gan_output) gan_optimizer = Adam(lr=0.0002, beta_1=0.5) gan.compile(loss='binary_crossentropy', optimizer=gan_optimizer) return gan ``` 接下来,我们可以使用GAN模型来训练我们的异常检测器: ```python import numpy as np def train_gan(X_train, latent_dim, epochs): generator = build_generator(latent_dim, X_train.shape[1]) discriminator = build_discriminator(X_train.shape[1]) gan = build_gan(generator, discriminator) for epoch in range(epochs): noise = np.random.normal(0, 1, size=(X_train.shape[0], latent_dim)) generated_data = generator.predict(noise) real_data = X_train[np.random.randint(0, X_train.shape[0], size=X_train.shape[0])] X = np.concatenate([real_data, generated_data]) y_discriminator = np.zeros(2*X_train.shape[0]) y_discriminator[:X_train.shape[0]] = 0.9 discriminator.trainable = True discriminator_loss = discriminator.train_on_batch(X, y_discriminator) noise = np.random.normal(0, 1, size=(X_train.shape[0], latent_dim)) y_generator = np.ones(X_train.shape[0]) discriminator.trainable = False gan_loss = gan.train_on_batch(noise, y_generator) if epoch % 100 == 0: print("Epoch:", epoch, "Discriminator Loss:", discriminator_loss, "GAN Loss:", gan_loss) return generator ``` 最后,我们可以使用生成器模型来生成新的数据,并将其与原始数据进行比较来检测异常: ```python def detect_anomalies(X_train, X_test, generator): generated_data = generator.predict(np.random.normal(0, 1, size=(X_test.shape[0], latent_dim))) errors = np.mean(np.power(X_test - generated_data, 2), axis=1) threshold = np.percentile(errors, 95) anomalies = X_test[errors > threshold] return anomalies ``` 这是一个简单的使用GAN算法进行异常检测的示例。请注意,这只是一个简单的示例,实际上可能需要更多的调整和优化才能实现更好的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值