ZOJ Problem Set - 1016
Parencodings
Time Limit:1 Second Memory Limit: 32768KB
Let S = s1 s2 ... s2n be a well-formed string of parentheses. S can beencoded in two different ways:
- By an integer sequence P = p1 p2 ... pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence).
- By an integer sequence W = w1 w2 ... wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence).
Following is an example of the above encodings:
S (((()()())))
P-sequence 4 5 6666
W-sequence 1 1 1456
Write a program to convert P-sequence of a well-formed string to the W-sequenceof the same string.
Input
The first line of the input contains a single integer t (1 <= t <= 10),the number of test cases, followed by the input data for each test case. Thefirst line of each test case is an integer n (1 <= n <= 20), and thesecond line is the P-sequence of a well-formed
string. It contains n positiveintegers, separated with blanks, representing the P-sequence.
Output
The output consists of exactly t lines corresponding to test cases. For eachtest case, the output line should contain n integers describing the W-sequenceof the string corresponding to its given P-sequence.
Sample Input
2
6
4 5 6 6 6 6
9
4 6 6 6 6 8 9 9 9
Sample Output
1 1 1 4 5 6
1 1 2 4 5 1 1 3 9
Source:Asia 2001, Tehran(Iran)
思路:
此题关键在于记录相邻右括号间剩余的括号数。
当读取一个新的P序列的数nP后,计算它与前一个P序列的数nLastP的差(nLastP初始为0,则第一个差为第一个nP),并保存为对应两个右括号间剩余的括号数nLParenLeft[i]。当要计算W序列的数Wi时,把Wi初始为1,从nLParenLeft[i]开始考察,如果不等于0,表示在这个位置有左括号剩余,则对其减一,并输出Wi;如果等于0,对Wi加一,并考察前一位的nLParenLeft[]。
代码:
#include <iostream>
using namespace std;
int main()
{
int nTestCaseNum;
cin>>nTestCaseNum;
cin.get();
while (nTestCaseNum--)
{
int nRParenNum;
cin>>nRParenNum;
cin.get();
int nLastP = 0;
int nLParenLeft[20];
for (int i = 0; i < nRParenNum; i ++)
{
int nP;
cin>>nP;
nLParenLeft[i] = nP - nLastP;
nLastP = nP;
int k = i;
int nW = 1;
while (k >= 0)
{
if(nLParenLeft[k]> 0)
{
nLParenLeft[k]--;
break;
}
else
{
k --;
nW ++;
}
}
if (i > 0)
{
cout<<" ";
}
cout<<nW;
}
cout<<endl;
}
return 0;
}