POJ1265 Area (Pick定理,多边形面积,计算几何)

本文解析了POJ-1265 Area题目,介绍了如何利用Pick定理计算多边形的面积、边界点数及内部点数。并给出了完整的AC代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

                                       Area  POJ - 1265

Being well known for its highly innovative products, Merck would definitely be a good target for industrial espionage. To protect its brand-new research and development facility the company has installed the latest system of surveillance robots patrolling the area. These robots move along the walls of the facility and report suspicious observations to the central security office. The only flaw in the system a competitor抯 agent could find is the fact that the robots radio their movements unencrypted. Not being able to find out more, the agent wants to use that information to calculate the exact size of the area occupied by the new facility. It is public knowledge that all the corners of the building are situated on a rectangular grid and that only straight walls are used. Figure 1 shows the course of a robot around an example area. 

 
Figure 1: Example area. 

You are hired to write a program that calculates the area occupied by the new facility from the movements of a robot along its walls. You can assume that this area is a polygon with corners on a rectangular grid. However, your boss insists that you use a formula he is so proud to have found somewhere. The formula relates the number I of grid points inside the polygon, the number E of grid points on the edges, and the total area A of the polygon. Unfortunately, you have lost the sheet on which he had written down that simple formula for you, so your first task is to find the formula yourself. 
Input
The first line contains the number of scenarios. 
For each scenario, you are given the number m, 3 <= m < 100, of movements of the robot in the first line. The following m lines contain pairs 揹x dy�of integers, separated by a single blank, satisfying .-100 <= dx, dy <= 100 and (dx, dy) != (0, 0). Such a pair means that the robot moves on to a grid point dx units to the right and dy units upwards on the grid (with respect to the current position). You can assume that the curve along which the robot moves is closed and that it does not intersect or even touch itself except for the start and end points. The robot moves anti-clockwise around the building, so the area to be calculated lies to the left of the curve. It is known in advance that the whole polygon would fit into a square on the grid with a side length of 100 units. 
Output
The output for every scenario begins with a line containing 揝cenario #i:� where i is the number of the scenario starting at 1. Then print a single line containing I, E, and A, the area A rounded to one digit after the decimal point. Separate the three numbers by two single blanks. Terminate the output for the scenario with a blank line.
Sample Input
2
4
1 0
0 1
-1 0
0 -1
7
5 0
1 3
-2 2
-1 0
0 -3
-3 1
0 -3
Sample Output
Scenario #1:
0 4 1.0

Scenario #2:
12 16 19.0

不知道为什么这道题有乱码,我一开始以为是别人复制题目的时候出错了,结果上了POJ才发现原来官方题目就有一些乱码Orz,这道题的题意就是告诉你机器人行走的路径,该路径一定会形成一个多边形,求这个多边形边上的在网格上的点的个数,内部在网格上的点的个数和面积。而pick定理就是关于这三个变量的一个公式。


Pick定理:一个计算点阵中顶点在格点上的多边形面积公式:S=a+b/2-1,其中a表示多边形内部的点数,b表示多边形边界上的点数,s表示多边形的面积。

1,多边形的面积等于按顺序求相邻两个点与原点组成的向量的叉积和。

   

2,多边形边界上的点数:
      两顶点连线构成边界,两顶点连线中(边界)所经过的点数为两顶点分别各自横纵坐标的差的最大公约数。gcd(dx,dy)。

3,多边形内部的点数:

     这时候我们因为可以求出前两个变量,所以第三个变量直接用pick定理求。

     inside(多边形内部的点) =  area(多边形面积)+1 -  boundary(多边形边界上的点)/2;


所以AC代码如下

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <queue>
#include <map>
#include <algorithm>
#include <set>
#include <functional>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
const int INF = 1e9 + 5;
const int MAXN = 50007;
const int MOD = 1000000007;
const double eps = 1e-8;
const double PI = acos(-1.0);

int gcd(int a, int b)
{
	return b == 0 ? a : gcd(b, a%b);
}


struct point
{
	int x;
	int y;
};

point p[1005];

int main()
{
	int N;
	int T;
	int x, y;
	int S;
	int a, b;
	scanf("%d", &T);
	for (int CASE = 1; CASE <= T; CASE++)
	{
		scanf("%d", &N);
		b = 0;
		a = 0;
		S = 0;
		memset(p, 0, sizeof(p));
		for (int i = 1; i <= N; i++)
		{
			scanf("%d%d", &x, &y);
			p[i].x = p[i - 1].x + x;
			p[i].y = p[i - 1].y + y;
			b += gcd(abs(x), abs(y));
			S += (p[i].y*p[i - 1].x - p[i].x*p[i - 1].y);
		}
	   	a = S/2 + 1 - b / 2;
		printf("Scenario #%d:\n", CASE);
		printf("%d %d %.1lf\n\n", a, b, double(S)/2);
	}
}
注意!一定要用C++提交,G++不知道为什么用memset初始化结构体的时候会出问题。

内容概要:本文深入解析了扣子COZE AI编程及其详细应用代码案例,旨在帮助读者理解新一代低门槛智能体开发范式。文章从五个维度展开:关键概念、核心技巧、典型应用场景、详细代码案例分析以及未来发展趋势。首先介绍了扣子COZE的核心概念,如Bot、Workflow、Plugin、Memory和Knowledge。接着分享了意图识别、函数调用链、动态Prompt、渐进式发布及监控可观测等核心技巧。然后列举了企业内部智能客服、电商导购助手、教育领域AI助教和金融行业合规质检等应用场景。最后,通过构建“会议纪要智能助手”的详细代码案例,展示了从需求描述、技术方案、Workflow节点拆解到调试与上线的全过程,并展望了多智能体协作、本地私有部署、Agent2Agent协议、边缘计算插件和实时RAG等未来发展方向。; 适合人群:对AI编程感兴趣的开发者,尤其是希望快速落地AI产品的技术人员。; 使用场景及目标:①学习如何使用扣子COZE构建生产级智能体;②掌握智能体实例、自动化流程、扩展能力和知识库的使用方法;③通过实际案例理解如何实现会议纪要智能助手的功能,包括触发器设置、下载节点、LLM节点Prompt设计、Code节点处理和邮件节点配置。; 阅读建议:本文不仅提供了理论知识,还包含了详细的代码案例,建议读者结合实际业务需求进行实践,逐步掌握扣子COZE的各项功能,并关注其未来的发展趋势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值