线程属性pthread_attr_t简介

本文深入探讨了Posix线程中的线程属性pthread_attr_t,包括detachstate、schedpolicy、schedparam、scope等主要属性的含义与设置方法。详细解释了如何在pthread_create中调整线程属性以实现线程的独立运行、优先级调度及与其他线程的竞争范围。并通过示例展示了如何灵活运用这些属性以优化线程管理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Posix线程中的线程属性pthread_attr_t主要包括scope属性、detach属性、堆栈地址、堆栈大小、优先级。在pthread_create中,把第二个参数设置为NULL的话,将采用默认的属性配置。
pthread_attr_t的主要属性的意义如下:
__detachstate ,表示新线程是否与进程中其他线程脱离同步,  如果设置为 PTHREAD_CREATE_DETACHED  则新线程不能用pthread_join()来同步,且在退出时自行释放所占用的资源。缺省为 PTHREAD_CREATE_JOINABLE 状态。这个属性也可以在线程创建并运行以后用 pthread_detach() 来设置,而一旦设置为PTHREAD_CREATE_DETACH状态(不论是创建时设置还是运行时设置)则不能再恢复到PTHREAD_CREATE_JOINABLE状态。
__schedpolicy ,表示新线程的调度策略,主要包括 SCHED_OTHER (正常、非实时)、 SCHED_RR (实时、轮转法)和 SCHED_FIFO (实时、先入先出)三种,缺省为 SCHED_OTHER ,后两种调度策略仅对超级用户有效。运行时可以用过pthread_setschedparam()来改变。
__schedparam ,一个 struct sched_param 结构,目前仅有一个 sched_priority 整型变量表示线程的运行优先级。这个参数仅当调度策略为实时(即SCHED_RR或SCHED_FIFO)时才有效,并可以在运行时通过pthread_setschedparam()函数来改变,缺省为 0
__inheritsched ,有两种值可供选择: PTHREAD_EXPLICIT_SCHED PTHREAD_INHERIT_SCHED ,前者表示新线程使用显式指定调度策略和调度参数(即attr中的值),而后者表示继承调用者线程的值。缺省为 PTHREAD_EXPLICIT_SCHED
__scope ,表示线程间竞争CPU的范围,也就是说线程优先级的有效范围。POSIX的标准中定义了两个值: PTHREAD_SCOPE_SYSTEM PTHREAD_SCOPE_PROCESS ,前者表示与系统中所有线程一起竞争CPU时间,后者表示仅与同进程中的线程竞争CPU。目前LinuxThreads仅实现了 PTHREAD_SCOPE_SYSTEM 一值。
  为了设置这些属性,POSIX定义了一系列属性设置函数,包括 pthread_attr_init()pthread_attr_destroy()和与各个属性相关的 pthread_attr_get XXX/ pthread_attr_set XXX函数。
在设置线程属性  pthread_attr_t 之前,通常先调用pthread_attr_init来初始化,之后来调用相应的属性设置函数。
主要的函数如下:
1、pthread_attr_init
功能:        对线程属性变量的初始化。
头文件:     <pthread.h>
函数原型:   int pthread_attr_init (pthread_attr_t* attr);
函数传入值:attr:线程属性。
函数返回值:成功: 0
                失败: -1
2、pthread_attr_setscope
功能:         设置线程  __scope  属性。scope属性表示线程间竞争CPU的范围,也就是说线程优先级的有效范围。POSIX的标准中定义了两个值: PTHREAD_SCOPE_SYSTEM PTHREAD_SCOPE_PROCESS ,前者表示与系统中所有线程一起竞争CPU时间,后者表示仅与同进程中的线程竞争CPU。默认为PTHREAD_SCOPE_PROCESS。 目前LinuxThreads仅实现了PTHREAD_SCOPE_SYSTEM一值。
头文件:     <pthread.h>
函数原型:    int  pthread_attr_setscope  (pthread_attr_t* attr, int scope);
函数传入值:attr: 线程属性。
                      scope: PTHREAD_SCOPE_SYSTEM表示与系统中所有线程一起竞争CPU时间,
                                  PTHREAD_SCOPE_PROCESS,表 示仅与同进程中的线程竞争CPU
函数返回值得:同1。
3、pthread_attr_setdetachstate
功能:         设置线程 detachstate 属性。该表示新线程是否与进程中其他线程脱离同步,如果设置为 PTHREAD_CREATE_DETACHED 则新线程不能用pthread_join()来同步,且在退出时自行释放所占用的资源。缺省为 PTHREAD_CREATE_JOINABLE 状态。这个属性也可以在线程创建并运行以后用pthread_detach()来设置,而一旦设置为PTHREAD_CREATE_DETACH状态(不论是创建时设置还是运行时设置)则不能再恢复到PTHREAD_CREATE_JOINABLE状态。
头文件:      <phread.h>
函数原型:     int  pthread_attr_setdetachstate  (pthread_attr_t* attr, int detachstate);
函数传入值:attr:线程属性。
detachstate: PTHREAD_CREATE_DETACHED不能用pthread_join()来同步,且在退出时自行释放所占用的资源
                     PTHREAD_CREATE_JOINABLE能用pthread_join()来同步
函数返回值得:同1。
4、pthread_attr_setschedparam
功能:       设置线程 schedparam 属性,即调用的优先级。
头文件:     <pthread.h>
函数原型:   i nt  pthread_attr_setschedparam  (pthread_attr_t* attr, struct sched_param* param);
函数传入值:attr:线程属性。
                 param:线程优先级。 一个struct sched_param结构,目前仅有一个sched_priority整型变量表示线程的运行优先级。这个参数仅当调度策略为实时(即SCHED_RR或SCHED_FIFO)时才有效,并可以在运行时通过pthread_setschedparam()函数来改变,缺省为0
函数返回值:同1。
5、pthread_attr_getschedparam
功能:       得到线程优先级。
头文件:    <pthread.h>
函数原型:   int  pthread_attr_getschedparam  (pthread_attr_t* attr, struct sched_param* param);
函数传入值:attr:线程属性;
                    param:线程优先级;
函数返回值:同1。

6.  pthread_detach( pthread_self ());
创建一个线程默认的状态是joinable, 如果一个线程结束运行但没有被join,则它的状态类似于进程中的Zombie Process,即还有一部分资源没有被回收(退出状态码),所以创建线程者应该调用 pthread_join来等待线程运行结束,并可得到线程的退出代码,回收其资源(类似于wait,waitpid)
但是调用 pthread_join(pthread_id)后,如果该 线程没有运行结束,调用者会被阻塞,在有些情况下我们并不希望如此,比如在Web服务器中当 主线程为每个新来的链接创建一个子线程进行处理的时候,主线程并不希望因为调用pthread_join而阻塞(因为还要继续处理之后到来的链接),这时可以在子线程中加入代码
pthread_detach( pthread_self())
或者父线程调用
pthread_detach(thread_id)(非阻塞,可立即返回)
这将该子线程的状态设置为detached,则该线程运行结束后会自动释放所有资源。

linux线程执行和windows不同,pthread有两种状态joinable状态和unjoinable状态,
如果线程是joinable状态,当线程函数自己返回退出时或pthread_exit时都不会释放线程所占用堆栈和线程描述符(总计8K多)。只有当你调用了pthread_join之后这些资源才会被释放。
若是unjoinable状态的线程,这些资源在线程函数退出时或pthread_exit时自动会被释放。
unjoinable属性可以在pthread_create时指定,或在线程创建后在线程中pthread_detach自己, 如:pthread_detach(pthread_self()),将状态改为unjoinable状态,确保资源的释放。或者将线程置为 joinable,然后适时调用pthread_join.

其实简单的说就是在线程函数头加上 pthread_detach(pthread_self())的话,线程状态改变,在函数尾部直接 pthread_exit线程就会自动退出。省去了给线程擦屁股的麻烦


示例1

#include <stdlib.h>   
#include <stdio.h>   
#include <errno.h>   
#include <pthread.h>   
static void pthread_func_1 ( void );   
static void pthread_func_2 ( void );   
  
int main ( int argc , char ** argv )   
{   
  pthread_t pt_1 = 0 ;   
  pthread_t pt_2 = 0 ;   
  pthread_attr_t atrr = { 0 };   
  int ret = 0 ;   
  
/*初始化属性线程属性*/
  pthread_attr_init (& attr );   
  pthread_attr_setscope (& attr , PTHREAD_SCOPE_SYSTEM );   
  pthread_attr_setdetachstate (& attr , PTHREAD_CREATE_DETACHED );   
     
  ret = pthread_create (& pt_1 , & attr , pthread_func_1 , NULL );   
  if ( ret != 0 )   
  {   
    perror ( "pthread_1_create" );   
  }   
     
  ret = pthread_create (& pt_2 , NULL , pthread_func_2 , NULL );   
  if ( ret != 0 )   
  {   
    perror ( "pthread_2_create" );   
  }   
  
  pthread_join ( pt_2 , NULL );   
  
  return 0 ;   
}   
  
static void pthread_func_1 ( void )   
{   
  int i = 0 ;   
     
  for (; i < 6 ; i ++)   
  {    
    printf ( "This is pthread_1.\n" );   
      
    if ( i == 2 )   
    {   
      pthread_exit ( 0 );   
    }   
  }   
  
  return ;   
}   
  
static void pthread_func_2 ( void )   
{   
  int i = 0 ;   
  
  for (; i < 3 ; i ++)   
  {   
    printf ( "This is pthread_2.\n" );   
  }   
  
  return ;   
}  

从上面事例中,可以得到这么一个结果,就是线程一的线程函数一结束就自动释放资源,线程二就得等到pthread_join来释放系统资源。

事例2:
int df_thread_create(pthread_t *t, void *(*start_routine)(void *), void *arg)
{
    pthread_attr_t attr;
    pthread_t thread_t;
    int ret = 0;


    if(t==NULL)
        t = &thread_t;


    if(pthread_attr_init(&attr))
    {
        df_log("pthread_attr_init fail!\n");
        return -1;
    }


    if(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED))
    {
        df_log("pthread_attr_setdetachstate fail!\n");
        goto error;
    }


    ret = pthread_create(t, &attr, start_routine, arg);
pthread_detach(*t);
    if(ret < 0)
    {
        df_log("pthread_create fail!\n");
        goto error;
    }


error:
    pthread_attr_destroy(&attr);
    return ret;
}
结束!
<think>好的,我现在需要回答用户关于pthread_attr_t和pthread_t区别的问题。首先,我得确认自己对这两个概念的理解是否正确。 用户提供的引用资料显示,pthread_attr_t是用来设置线程属性的类型,比如堆栈大小、优先级等。而pthread_t是线程的标识符,用来操作线程本身,比如创建或加入线程。根据引用4,pthread_attr_t封装了线程的各种属性,而pthread_t则是线程的句柄。 接下来,我需要整理两者的区别。首先是用途:pthread_attr_t用于配置属性,而pthread_t用于标识和管理线程的生命周期。然后是操作函数,比如attr_init、attr_set等用于属性对象,而create、join用于线程对象。生命周期方面,属性对象通常在配置后销毁,而线程对象存在直到线程结束。 在用法上,用户可能想知道如何具体使用这两个类型。例如,创建线程时需要先初始化属性对象,设置好参数,再将属性传递给pthread_create。这部分需要结合引用2中的示例代码来说明,比如初始化attr,设置优先级,然后创建线程时使用该attr。 还需要注意线程属性的作用,如分离状态、调度策略等,这些在引用3和4中有提到。可能用户会混淆两者的功能,所以需要明确区分属性设置和线程操作的不同步骤。 最后,生成相关问题时要围绕两者的区别、使用场景和常见操作,比如如何设置特定属性,或者如何管理多个线程。确保问题能帮助用户深入理解。</think>### pthread_attr_t与pthread_t的区别及用法解析 #### 一、核心区别 1. **用途不同** - **`pthread_attr_t`**:用于定义线程的**属性**(如堆栈大小、调度策略、优先级、分离状态等),是线程的配置参数集合[^4]。 - **`pthread_t`**:表示线程的**标识符**(线程ID),用于操作线程本身(如创建、终止、加入线程)。 2. **操作函数不同** - 对`pthread_attr_t`的操作: ```c pthread_attr_init() // 初始化属性对象 pthread_attr_setschedparam() // 设置优先级 pthread_attr_destroy() // 销毁属性对象 ``` - 对`pthread_t`的操作: ```c pthread_create() // 创建线程 pthread_join() // 等待线程结束 pthread_cancel() // 终止线程 ``` 3. **生命周期不同** - `pthread_attr_t`:通常在配置线程属性后即销毁(通过`pthread_attr_destroy()`)[^2]。 - `pthread_t`:伴随线程的整个生命周期,直到线程终止。 --- #### 二、具体用法示例 ##### 1. 使用`pthread_attr_t`配置线程属性 ```c #include <pthread.h> int main() { pthread_attr_t attr; struct sched_param param; // 初始化属性对象 pthread_attr_init(&attr); // 设置线程为分离状态(无需pthread_join) pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); // 设置线程优先级 param.sched_priority = 10; pthread_attr_setschedparam(&attr, &param); // 创建线程时传递属性对象 pthread_t thread; pthread_create(&thread, &attr, thread_function, NULL); // 销毁属性对象 pthread_attr_destroy(&attr); return 0; } ``` [^2] ##### 2. 使用`pthread_t`管理线程 ```c void* thread_task(void* arg) { printf("Thread is running\n"); return NULL; } int main() { pthread_t thread; // 创建线程(使用默认属性pthread_create(&thread, NULL, thread_task, NULL); // 等待线程结束 pthread_join(thread, NULL); return 0; } ``` --- #### 三、对比表格 | 特性 | `pthread_attr_t` | `pthread_t` | |--------------------|--------------------------------------|----------------------------------| | **本质** | 线程属性配置容器 | 线程的句柄(ID) | | **操作目标** | 控制线程行为(如优先级、堆栈大小) | 控制线程生命周期(创建、终止) | | **是否需要销毁** | 是(`pthread_attr_destroy()`) | 否(随线程结束自动失效) | | **典型应用场景** | 需要定制化线程属性时(如实时系统) | 常规线程操作 | --- #### 四、常见问题解答 **Q1: 为什么需要单独设置线程属性?** 当线程需要特定行为(如固定优先级、独立堆栈)时,通过`pthread_attr_t`预配置属性,可避免在运行时动态调整带来的复杂性。 **Q2: 能否直接修改已创建线程属性?** 不能。线程属性必须在**创建线程前**通过`pthread_attr_t`设置,创建后无法直接修改[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值