opencv-day1-基础

OpenCV课程

  • OpenCV的全称是Open Source Computer Vision Library,是一个开放源代码的计算机视觉库

  • OpenCV可用于开发实时的图像处理,计算机视觉以及模式识别程序,目前在工业界以及科研领域广泛采用

opencv重要性

  • 计算机视觉:OpenCV 是计算机视觉领域的标准库之一,广泛应用于图像识别、物体检测、人脸识别、手势识别等。

  • 机器人技术:在机器人导航、环境感知和交互中,OpenCV 用于处理传感器数据和视觉信息。

  • 医学影像:在医学影像分析中,OpenCV 用于图像增强、分割和特征提取。

  • 自动驾驶:在自动驾驶汽车中,OpenCV 用于环境感知、障碍物检测和车道线识别。

  • 安全监控:在安全监控系统中,OpenCV 用于运动检测、人脸识别和行为分析。

    学习 OpenCV 不仅可以提升你的技术能力,还能为你在计算机视觉和图像处理领域的发展打开更多的门路。无论是学术研究、工业应用还是个人项目,OpenCV 都是一个不可或缺的工具

环境安装

pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple

显示窗口

cv2.namedWindow ,用于创建一个命名窗口,以便在该窗口中显示图像或进行其他图形操作。这个函数在处理图像和视频时非常有用,尤其是在开发基于图像处理的应用程序时

cv2.namedWindow(winname, flags=None)

参数说明

  • winname (str): 窗口的名称。这个名称必须是唯一的,因为它是用来标识窗口的。

  • flags (int, 可选): 窗口的标志,用于设置窗口的行为。默认值为

    cv2.WINDOW_AUTOSIZE

    。常见的标志包括:

    • cv2.WINDOW_NORMAL: 允许调整窗口大小。

    • cv2.WINDOW_AUTOSIZE: 窗口大小根据图像大小自动调整,不能手动调整。。

示例

以下是一个简单的示例,展示如何使用 cv2.namedWindow 创建一个窗口并在其中显示图像:

import cv2
​
# 读取图像
image = cv2.imread('images/car.png')
​
# 创建一个名为 "Image Window" 的窗口,允许调整大小
cv2.namedWindow('Image Window', cv2.WINDOW_NORMAL)
​
#2 设置名字和窗口大小
cv2.resizeWindow("Image Window",500,300)
# 显示图像
cv2.imshow('Image Window', image)
​
# 等待用户按键
cv2.waitKey(0)
​
# 关闭所有窗口
cv2.destroyAllWindows()

详细解释

  1. 读取图像

    image = cv2.imread('path/to/your/image.jpg')

    使用 cv2.imread 函数读取图像文件。

  2. 创建窗口

    cv2.namedWindow('Image Window', cv2.WINDOW_NORMAL)

    使用 cv2.namedWindow 创建一个名为 "Image Window" 的窗口,并设置标志为 cv2.WINDOW_NORMAL,允许用户调整窗口大小。

  3. 显示图像

    cv2.imshow('Image Window', image)

    使用 cv2.imshow 在指定的窗口中显示图像。

  4. 等待用户按键

    cv2.waitKey(0)

    使用 cv2.waitKey 暂停程序执行,等待用户按键。参数 0 表示无限期等待,直到有按键事件发生。

    返回值:是一个ASCII值,

    例如:q 键 ASCII 值为 113 ESC 键是27

  5. 关闭所有窗口

    cv2.destroyAllWindows()

    使用 cv2.destroyAllWindows 关闭所有打开的窗口。

其他注意事项

  • 窗口名称:窗口名称必须是唯一的,否则会覆盖已有的同名窗口。

  • 窗口标志:选择合适的窗口标志可以提升用户体验,特别是在需要用户交互的场景中。

    #显示窗口
    import cv2
    #创建窗口函数,image窗口名称。cv2.WINDOW_NORMAL允许手动调整窗口大小
    cv2.namedWindow("image",cv2.WINDOW_NORMAL)
    #设置窗口大小,image窗口名称,必须和namedWindow的窗口名称一致
    cv2.resizeWindow("image",500,300)
    #读取一个图片,imread(图片路径),不支持中文路径
    #简写
    def work_01():
        # 图片路径:1,支持绝对和相对路径;2,图片路径不能用中文;3.图片路径如果有转义字符,用r“”表达式进行转义
        image = cv2.imread("image/car.png")
        #这里的路径注意位置的存放,如果是同级目录,用image/car.png即可,如果是不同级的包,要用../image/car.png
        # image=cv2.imread(r"C:\Users\TX\Desktop\opcv_01\car.png")
        if image is None:
            print("没有读取到图片")
            return
        #用窗口显示图片
        cv2.imshow("image", image)
       #等待键盘操作,0代表无限等待,waitKey返回一个ASCII值,
        # while(True):
        #     key = cv2.waitKey()
        #
        #  #27指的是ESC键的ASCII值
        #     if key ==27:
        #        print("终止")
        #        break
    work_01()
    cv2.waitKey(0)
    #释放资源或者关闭窗口
    cv2.destroyAllWindows()

创建空白图像

你可以使用 np.zeros 函数创建一个全零数组,这个数组可以表示一个空白图像。数组的形状应该符合图像的尺寸和通道数(例如,对于 RGB 图像,形状应为 (height, width, 3)

函数写法

# 创建一个 500x500 像素的空白图像,3 个通道(RGB)
height, width, channels = 500, 500, 3
blank_image = np.zeros((height, width, channels), dtype=np.uint8)

案例:

import cv2
import numpy as np
​
# 创建一个 500x500 像素的空白图像,3 个通道(RGB)
height, width, channels = 500, 500, 3
blank_image = np.zeros((height, width, channels), dtype=np.uint8)
​
# 显示空白图像
cv2.imshow('Image', blank_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
#创建黑白图片
def test01():
    # 创建一个图片矩阵
    #300是图片的高度,500是图片的宽度,3是指通道(图像的颜色,3代表RGB,1是灰度图像)
    image=np.zeros((300,500,3),dtype=np.uint8)
    print(image)
    cv2.imshow("image",image)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
​
test01()

保存图片

`cv2.imwrite 是 OpenCV 库中的一个函数,用于将图像保存到文件中。这个函数在图像处理和计算机视觉任务中非常常用,特别是在需要将处理后的图像结果保存到磁盘时。

函数原型

cv2.imwrite(filename, img[, params])

参数说明

  • filename (str): 要保存的文件路径和名称。支持的文件格式包括 .jpg, .png, .bmp, .tiff 等。

  • img (numpy.ndarray): 要保存的图像。通常是一个二维或三维的 NumPy 数组,表示图像的像素值。

返回值

  • bool: 成功保存图像返回 True,否则返回 False

示例

以下是一个简单的示例,展示如何使用 cv2.imwrite 将图像保存到文件中:

import cv2
​
# 读取图片
img = cv2.imread("images/car.png")
# 保存图片
rs = cv2.imwrite("save_image/car.png", img)
if rs:
    print("图像保存成功!")
else:
    print("图像保存失败!")

其他注意事项

  • 文件路径:确保提供的文件路径是有效的,如果路径不存在,OpenCV 会尝试创建它,但如果权限不足则会保存失败。

  • import cv2
    import numpy as np
    #读取图片
    #img=cv2.imread("../image/car.png")
    img=np.zeros((300,500,3),dtype=np.uint8)
    #保存图片:imwrite(保存图片路径,图像矩阵),返回值是一个布尔值
    iss=cv2.imwrite("save_image/car01.png",img)
    if iss==True:
        print("保存成功")
    else:
        print("保存失败")

图像切片(裁剪)

在 OpenCV 中,图像切片用于从图像中提取一个子区域(矩形区域)。这种操作在图像处理中非常常见,特别是在进行目标检测、ROI(Region of Interest,感兴趣区域)提取等任务时。

语法解释

假设你有一个图像 img,它的类型是 numpy.ndarrayimg[y:y+h, x:x+w] 的含义如下:

  • x: 子区域左上角的 x 坐标。

  • y: 子区域左上角的 y 坐标。

  • w: 子区域的宽度。

  • h: 子区域的高度。

切片操作

  • img[y:y+h, x:x+w] 提取的是从 (x, y) 开始,宽度为 w,高度为 h 的矩形区域。

示例

假设你有一个图像 img,并且你想要从这个图像中提取一个特定的矩形区域,例如左上角坐标为 (50, 60),宽度为 100,高度为 150 的区域。

import cv2
​
# 读取图像
img = cv2.imread('input_image.jpg')
​
# 定义矩形区域的参数
x, y, w, h = 50, 60, 100, 150
​
# 提取子区域
roi = img[y:y+h, x:x+w]
​
# 显示原始图像和提取的子区域
cv2.imshow('Image', img)
cv2.imshow('ROI', roi)
​
# 等待用户按键
cv2.waitKey(0)
​
# 关闭所有窗口
cv2.destroyAllWindows()

其他注意事项

  • 边界检查:确保 (x, y)(x+w, y+h) 都在图像的边界内,否则会导致数组索引越界错误。

  • 数据类型img 通常是 numpy.ndarray 类型,切片操作返回的也是 numpy.ndarray 类型。

import cv2
img=cv2.imread('image/car.png')
#获取图片的像素
h,w,c=img.shape
print(f"高度:{h},宽度:{w},通道:{c}")
#定义坐标
x=50#x坐标小于图片的宽度
y=50#y坐标小于图片的高度
w=300#w,h裁剪后图片的像素
h=100
cai_img=img[y:y+h,x:w+x]
#获取图片的像素
hc,wc,cc=img.shape
print(f"高度:{hc},宽度:{wc},通道:{cc}")
cv2.imshow("old",img)
cv2.imshow("image",cai_img)
​
cv2.waitKey(0)
cv2.destroyAllWindows()

调整图片大小

cv2.resize 是 OpenCV 库中的一个函数,用于调整图像的大小。这个函数在图像处理中非常常用,特别是在需要对图像进行缩放、放大或缩小以适应不同需求时。

函数原型

cv2.resize(src, dsize, dst)

参数说明

  • src (numpy.ndarray): 输入图像,通常是一个二维或三维的 NumPy 数组。

  • dsize (tuple): 输出图像的尺寸,是一个二元组 (width, height)。如果指定了 fxfy,则可以忽略此参数。

返回值

  • dst (numpy.ndarray): 缩放后的图像。

示例

以下是一个简单的示例,展示如何使用 cv2.resize 调整图像的大小:

import cv2
​
img = cv2.imread("images/car.png")
#获取图片的像素和通道数
height, width, channels = img.shape
print(f"高度:{height},宽度:{width},通道数:{channels}")
#调整图片的大小
img = cv2.resize(img, (300, 300))
height, width, channels = img.shape
print(f"调整后:高度:{height},宽度:{width},通道数:{channels}")
#保存图片
cv2.imwrite("save_image/car.png", img)
import cv2
#调整图片大小作用:
# 1.方便OCR文字识别,像素超过OCR文字的阈值,识别不出来,需要图片大小调整
#2.模型训练的时候,像素的大小也会影响模型训练的复杂度
#读取图片
img=cv2.imread("image/car.png")
print(img.shape)
#获取图片大小
(h,w)=img.shape[:2]
print(h,w)
#调整大小
r_img=cv2.resize(img,(200,100))
(h,w)=r_img.shape[:2]
print(h,w)
cv2.imshow("old",img)
cv2.imshow("new",r_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

图像绘制

绘制圆形

cv2.circle()函数用于在图像上绘制圆形。该函数的语法如下:

cv2.circle(img, center, radius, color, thickness)

其中,参数解释如下:

  • img:要绘制圆形的图像。

  • center:圆心的坐标。

  • radius:圆的半径。

  • color:圆的颜色,通常是一个表示BGR颜色的元组,例如(255, 0, 0)表示蓝色。

  • thickness:圆的边界线条的厚度,如果为负值或cv2.FILLED,表示填充整个圆。

    案例

#绘制圆形
def test10():
    img = cv2.imread("../images/car.png")
    # 绘制圆形
    center = (300, 200)  # 圆心坐标
    radius = 50  # 半径
    color = (0, 255, 0)  # 颜色为绿色
    thickness = 5  # 线条厚度
    cv2.circle(img, center, radius, color, thickness)
​
    # 显示带有圆形的图像
    cv2.imshow('Circle', img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
import cv2
img=cv2.imread("image/car.png")
#圆心坐标
center=(50,50)
#半径
radis=50
#BGR颜色,RGB颜色
color=(0,0,255)#代表在BGR里的红色
#线条宽度
w=5
#画圆
c_img=cv2.circle(img,center,radis,color,w)
​
cv2.imshow("img",c_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

绘制矩形

cv2.rectangle()`函数用于在图像上绘制矩形。该函数的语法如下:

 cv2.rectangle(img, pt1, pt2, color[, thickness[, lineType[, shift]]])

其中,参数解释如下:

  • img:要绘制矩形的图像。

  • pt1:矩形的一个顶点。

  • pt2:矩形对角线上的另一个顶点。

  • color:矩形的颜色,通常是一个表示BGR颜色的元组,例如(255, 0, 0)表示蓝色。

  • thickness:矩形边框的厚度,如果为负值或cv2.FILLED,表示填充整个矩形内部。

#绘制图片-矩形
def test09():
    img = cv2.imread("../images/car.png")
    # 绘制矩形
    leftTop = (100, 100)  # 左上角顶点
    rightFoot= (300, 200)  # 右下角顶点
    color = (0, 255, 0)  # 颜色为绿色
    width = 2  # 线条厚度
    cv2.rectangle(img, leftTop, rightFoot, color, width)
    # 显示带有矩形的图像
    cv2.imshow('Rectangle', img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
import cv2
import numpy as np
​
img=np.zeros((200,500,3),dtype=np.uint8)
#定义绘制矩形的左上角坐标
left_top=(100,100)
#定义绘制矩形的右下角坐标
right_bottom=(200,200)
#定义颜色
color=(0,0,255)
#定义线条宽度
w=5
#画矩形
r_img=cv2.rectangle(img,left_top,right_bottom,color,w)
cv2.imshow("a",r_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

绘制文本

cv2.putText 是 OpenCV 库中的一个函数,用于在图像上添加文本。这个函数在图像处理和计算机视觉任务中非常有用,特别是在需要标注图像、显示信息或调试时。

函数原型

cv2.putText(img, text, org, fontFace, fontScale, color[, thickness[, lineType[, bottomLeftOrigin]]])

参数说明

  • img (numpy.ndarray): 输入图像,通常是一个二维或三维的 NumPy 数组。

  • text (str): 要添加的文本字符串。

  • org (tuple): 文本的起始位置,是一个二元组 (x, y),表示文本左下角的坐标。

  • fontFace

    (int): 字体类型,常见的字体类型包括:

    • cv2.FONT_HERSHEY_SIMPLEX: 正常大小的无衬线字体

    • cv2.FONT_HERSHEY_PLAIN: 小号的无衬线字体

    • cv2.FONT_HERSHEY_DUPLEX: 正常大小的无衬线字体,比 FONT_HERSHEY_SIMPLEX 更粗

    • cv2.FONT_HERSHEY_COMPLEX: 正常大小的有衬线字体

    • cv2.FONT_HERSHEY_TRIPLEX: 正常大小的有衬线字体,比 FONT_HERSHEY_COMPLEX 更粗

    • cv2.FONT_HERSHEY_SCRIPT_SIMPLEX: 手写风格的字体

    • cv2.FONT_HERSHEY_SCRIPT_COMPLEX: 手写风格的字体,比 FONT_HERSHEY_SCRIPT_SIMPLEX 更粗

    • cv2.FONT_ITALIC: 斜体修饰符,可以与其他字体类型组合使用

  • fontScale (float): 字体大小的比例因子。

  • color (tuple): 文本颜色,是一个三元组 (B, G, R),表示蓝色、绿色和红色的值。

  • thickness (int, 可选): 文本线条的厚度,默认值为 1。

  • lineType

    (int, 可选): 线条类型,常见的线条类型包括:

    • cv2.LINE_4: 4 连通线

    • cv2.LINE_8: 8 连通线

    • cv2.LINE_AA: 抗锯齿线(默认值)

返回值

  • img (numpy.ndarray): 添加文本后的图像。

示例

以下是一个简单的示例,展示如何使用 cv2.putText 在图像上添加文本:

import cv2
import numpy as np
​
image = cv2.imread("images/car.png")
​
# 定义文本内容和位置
text = "hello world!"
# 文本的左下角位置
position = (50, 200)
# 设置字体类型
font = cv2.FONT_HERSHEY_SIMPLEX
#字体大小
font_scale = 1
#字体颜色
font_color = (0, 255, 0)  
#字体线条的粗细
line_type = 2
​
# 在图像上绘制文本
cv2.putText(image, text, position, font, font_scale, font_color, line_type)
# 显示图像
cv2.imshow(' Text', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
​
# 保存图像(可选)
cv2.imwrite('output_image.png', image)
import cv2
import numpy as np
from PIL import Image, ImageDraw, ImageFont
​
def put_text(image, text, position, font_path, font_size, color):
    # 将 OpenCV 图像转换为 PIL 图像
    pil_image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
​
    # 创建一个可以在给定图像上绘图的对象
    draw = ImageDraw.Draw(pil_image)
​
    # 加载字体
    font = ImageFont.truetype(font_path, font_size)
​
    # 在图像上绘制文本
    draw.text(position, text, fill=color, font=font)
​
    # 将 PIL 图像转换回 OpenCV 图像
    image_with_text = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
​
    return image_with_text
​
img=cv2.imread("image/car.png")
#只支持英文 中文乱码需要另外方式(def put_text)解决
#定义字体的文本内容
text="hello world"
#起始坐标
c=(100,200)
#字体格式
f=cv2.FONT_HERSHEY_PLAIN
#字体大小
size=2
#字体线条粗细
w=2
#字体颜色
color=(0,0,255)
#写字
#c_img=cv2.putText(img,text=text,org=c,fontScale=size,fontFace=f,color=color,thickness=w)
font_path="font/simhei.ttf"
c_img=put_text(img,"你好世界",c,font_path,24,color)
cv2.imshow("a",c_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

绘制直线

cv2.line(img, pt1, pt2, color, thickness lineType) -> img

参数说明

  • img: 输出图像,即要在这张图上绘制直线的图像。通常是一个 NumPy 数组。

  • pt1: 直线的一个端点,是一个包含两个元素(x, y)的元组,代表该点的坐标。

  • pt2: 直线的另一个端点,也是一个包含两个元素(x, y)的元组,代表该点的坐标。

  • color: 直线的颜色,对于 BGR 图像,这应该是一个包含三个整数的元组,分别对应蓝色、绿色和红色的强度(例如 (255, 0, 0) 表示纯蓝色)。对于灰度图像,只需要一个整数值即可。

  • thickness: 可选参数,定义直线的宽度。默认值是 1。

返回值

  • img: 返回的是经过修改后的图像,实际上就是传入的图像本身,因为 cv2.line() 是直接在原图上操作的。

cv2.line() 是 OpenCV 库中的一个函数,用于在图像上绘制直线。这个函数非常直观,它接受多个参数来定义直线的位置、颜色、厚度等属性。以下是 cv2.line() 函数的基本语法及其参数说明

import cv2
​
img = cv2.imread("images/car.png")
​
# 定义直线的起点和终点
start_point = (50, 50)  # 起点坐标 (x1, y1)
end_point = (450, 450)  # 终点坐标 (x2, y2)
​
# 定义颜色 (B, G, R) 和线条粗细
color = (255, 0, 0)  # 蓝色
thickness = 2  # 线条的宽度
​
# 使用 cv2.line() 在图像上绘制直线
cv2.line(img, start_point, end_point, color, thickness)
​
# 显示图像
cv2.imshow('Image with Line', img)
​
# 等待按键,然后关闭窗口
cv2.waitKey(0)
cv2.destroyAllWindows()

import cv2
img=cv2.imread("image/car.png")
#直线起始坐标
start=(100,150)
#直接的截止坐标
end=(200,150)
#颜色
color=(0,0,255)
#宽度
w=20
l_img=cv2.line(img,start,end,color,w)
cv2.imshow("a",l_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

控制鼠标

cv2.setMouseCallback 是 OpenCV 提供的一个非常有用的函数,它允许用户定义一个回调函数,当鼠标事件发生时(如点击、释放、移动等),该回调函数会被调用。这在创建交互式应用程序时特别有用,比如图像标注工具、绘图程序等。

案例:

import cv2
#创建鼠标回调函数
def draw_test(event,x,y,flag,param):
    print(x,y)
img =  cv2.imread('images/car.png')
cv2.namedWindow('image')
#设置鼠标回调函数
cv2.setMouseCallback('image', draw_test)
cv2.imshow('image', img)
# 等待用户按键
cv2.waitKey(0)
cv2.destroyAllWindows()

代码解释

  1. draw_test函数:

    • event: 鼠标事件类型,如 cv2.EVENT_LBUTTONDOWN 表示左键按下。

    • x, y: 鼠标事件发生时的坐标。

    • flags: 额外的标志位,通常不用。

    • param: 传递给回调函数的参数,通常不用。

cv2.setMouseCallback('image', draw_test) 设置鼠标回调函数,当在 'image' 窗口中发生鼠标事件时,调用 draw_circle 函数

案例:在图像上绘制圆形

import cv2
import numpy as np
​
#创建鼠标回调函数
def draw_test(event,x,y,flag,param):
    global drawing
    # cv2.EVENT_LBUTTONDOWN  鼠键左键按下事件
    if event == cv2.EVENT_LBUTTONDOWN:
        drawing = True
    # cv2.EVENT_MOUSEMOVE  鼠键左键移动事件
    elif event == cv2.EVENT_MOUSEMOVE:
        if drawing:
            cv2.circle(img,(x,y),15,(255,0,0),-1)
​
    #cv2.EVENT_LBUTTONUP  鼠键左键释放事件
    elif event == cv2.EVENT_LBUTTONUP:
        drawing = False
        cv2.circle(img, (x, y), 15, (255, 0, 0), -1)
​
img= cv2.imread('../images/car.png')
cv2.namedWindow('image')
#设置鼠标回调函数
cv2.setMouseCallback('image', draw_test)
# 真正的标志,表示是否正在绘制
drawing = False
#永真循环,图像被绘制后显示图片,直到按下ESC键退出
while(True):
    cv2.imshow('image', img)
    if cv2.waitKey(20) == 27:  # 按ESC退出
        break
cv2.destroyAllWindows()
#控制鼠标
import cv2
#鼠标回调函数
#event:鼠标事件
#x,y:鼠标在图像区域所在的坐标
#flag:标识符
#param:参数
def mytest(event,x,y,flag,param):
    print(f"event={event}")
    print(f"坐标是{(x,y)}")
    print(f"flag={flag}")
    print(f"param={param}")
​
​
img=cv2.imread("image/car.png")
#定义窗口
cv2.namedWindow("name",cv2.WINDOW_AUTOSIZE)
#设置执行鼠标操作的回调函数
cv2.setMouseCallback("name",mytest)
cv2.imshow("name",img)
cv2.waitKey(0)
cv2.destroyAllWindows()
#鼠标事件
import cv2
#鼠标回调函数
#event:鼠标事件
#x,y:鼠标在图像区域所在的坐标
#flag:标识符
#param:参数
def mytest(event,x,y,flag,param):
    global d
    #鼠标左键按下的事件
    if event==cv2.EVENT_LBUTTONDOWN:
        print("鼠标左键按下")
        cv2.circle(img,(x,y),50,(0,0,255),-1)#宽度-1是一个实心圆
        d=True
    elif event==cv2.EVENT_LBUTTONUP:
        print("鼠标左键释放")
        d=False
    elif event==cv2.EVENT_MOUSEMOVE:
        print("鼠标移动了")
        if d==True:
            cv2.circle(img, (x, y), 50, (0, 0, 255), -1)
​
img=cv2.imread("image/car.png")
#定义窗口
cv2.namedWindow("name",cv2.WINDOW_AUTOSIZE)
d=False
#设置执行鼠标操作的回调函数
cv2.setMouseCallback("name",mytest)
​
while (True):
    cv2.imshow("name",img)
    #按下ESC键,关闭程序
    if cv2.waitKey(20)==27:
        break
#关闭窗口
cv2.destroyAllWindows()

视频处理

cv2.VideoCapture 是 OpenCV 库中的一个类,用于从摄像头或视频文件中捕获视频帧。这个类提供了多种方法来控制视频捕获的过程,包括打开视频文件、读取视频帧、获取视频属性等。

常用方法

  1. read()

read() 方法用于从视频源中读取下一帧。它返回一个布尔值和图像帧。布尔值表示是否成功读取了帧,图像帧是一个 NumPy 数组。

ret, frame = cap.read()
if not ret:
    print("Failed to grab frame")
    break
  1. release()

release() 方法用于释放视频捕获资源。在完成视频处理后,必须调用此方法来释放摄像头或视频文件。

cap.release()
  1. isOpened()

isOpened() 方法用于检查视频捕获对象是否已经成功打开。

if not cap.isOpened():
    print("Error opening video stream or file")
  1. get()set()

get()set() 方法用于获取和设置视频捕获属性。常用的属性包括帧宽、帧高、帧率等。

# 获取帧宽
width = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
​
# 获取帧高
height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
​
# 获取帧率
fps = cap.get(cv2.CAP_PROP_FPS)
​
# 设置帧宽
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
​
# 设置帧高
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)

案例

import cv2
​
# 打开视频文件或摄像头
# 使用 0 打开默认摄像头,或者替换为视频文件路径,例如 'video.mp4'
video_capture = cv2.VideoCapture('video/1.mp4')  # 0 表示使用摄像头
if not video_capture.isOpened():
      print("视频没有打开")
      exit()
# 获取视频的帧率
fps = video_capture.get(cv2.CAP_PROP_FPS)
delay = int(1000 / fps)  # 计算帧间延迟
while True:
    # 逐帧读取视频
    ret, frame = video_capture.read()
    # 显示当前帧
    cv2.imshow('Video', frame)
    # 按下 'q' 键退出
    if cv2.waitKey(delay) & 0xFF == ord('q'):
        break
# 释放视频捕获对象和关闭所有窗口
video_capture.release()
cv2.destroyAllWindows()
import cv2
#0:开启摄像头,参数如果是视频路径是开启视频
cap=cv2.VideoCapture("video/1.mp4")
#可以自己调整窗口大小
# cv2.namedWindow("image",cv2.WINDOW_NORMAL)
# # #设置窗口大小,image窗口名称,必须和namedWindow的窗口名称一致
# cv2.resizeWindow("image",300,300)
​
while (True):
    # 读取视频,ret是否读取到,frame:图片(帧)(一帧一帧地读取)
    ret,frame=cap.read()
    if ret:
        cv2.imshow("name",frame)
    if cv2.waitKey(20)==27:
        break
cv2.destroyAllWindows()

关于opencv 显示中文乱码问题解决

在使用 OpenCV 的 cv2.putText 函数添加中文时,可能会遇到显示乱码的问题。这是因为 OpenCV 默认使用的字体不支持中文字符。为了在图像上正确显示中文,可以使用 PIL(Pillow)库来处理文本,然后将文本渲染到图像上

1 确保你已经安装了 opencv-pythonPillow 库。如果没有安装,可以通过 pip 安装:

注意:如果用的Anaconda ,是包含了这个库,可以不安装

pip install opencv-python pillow
pip install opencv-python pillow -i https://pypi.tuna.tsinghua.edu.cn/simple

2 下载一个中文字体文件,常见的中文字体文件有 simhei.ttfsimsun.ttc 等。你可以从系统中找到这些字体文件,或者从互联网下载。

3 定义 put_text 函数

import cv2
from PIL import Image, ImageDraw, ImageFont
import numpy as np
​
def put_text(image, text, position, font_path, font_size, color):
    # 将 OpenCV 图像转换为 PIL 图像
    pil_image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
    
    # 创建一个可以在给定图像上绘图的对象
    draw = ImageDraw.Draw(pil_image)
    
    # 加载字体
    font = ImageFont.truetype(font_path, font_size)
    
    # 在图像上绘制文本
    draw.text(position, text, fill=color, font=font)
    
    # 将 PIL 图像转换回 OpenCV 图像
    image_with_text = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
    
    return image_with_text

4 案例

import cv2
from PIL import Image, ImageDraw, ImageFont
import numpy as np
​
​
def put_text(image, text, position, font_path, font_size, color):
    # 将 OpenCV 图像转换为 PIL 图像
    pil_image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
​
    # 创建一个可以在给定图像上绘图的对象
    draw = ImageDraw.Draw(pil_image)
​
    # 加载字体
    font = ImageFont.truetype(font_path, font_size)
​
    # 在图像上绘制文本
    draw.text(position, text, fill=color, font=font)
​
    # 将 PIL 图像转换回 OpenCV 图像
    image_with_text = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
​
    return image_with_text
​
​
# 读取图像
image = cv2.imread('images/car.png')
​
# 定义文本内容、位置、字体路径、字体大小和颜色
text = "你好,世界!"
position = (50, 50)
font_path = "myfont/simhei.ttf"    # 替换为你的字体文件路径
font_size = 30
color = (0, 0, 255)  # BGR 格式
​
# 在图像上添加中文文本
image_with_text = put_text(image, text, position, font_path, font_size, color)
​
# 显示图像
cv2.imshow('Image with Text', image_with_text)
cv2.waitKey(0)
cv2.destroyAllWindows()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值