HDOJ 1063 Exponentiation

本文介绍了一种计算实数R的整数次幂R^n的精确方法,其中R为0.0到99.999之间的实数,n为1到25之间的整数。通过使用字符串和数组来存储和操作大数,确保了计算结果的精确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Exponentiation

Time Limit: 1000/500 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 5340    Accepted Submission(s): 1447


Problem Description
Problems involving the computation of exact values of very large magnitude and precision are common. For example, the computation of the national debt is a taxing experience for many computer systems. 

This problem requires that you write a program to compute the exact value of R n where R is a real number ( 0.0 < R < 99.999 ) and n is an integer such that 0 < n <= 25. 
 

Input
The input will consist of a set of pairs of values for R and n. The R value will occupy columns 1 through 6, and the n value will be in columns 8 and 9.
 

Output
The output will consist of one line for each line of input giving the exact value of R^n. Leading zeros should be suppressed in the output. Insignificant trailing zeros must not be printed. Don't print the decimal point if the result is an integer.
 

Sample Input
  
95.123 12 0.4321 20 5.1234 15 6.7592 9 98.999 10 1.0100 12
 

Sample Output
  
548815620517731830194541.899025343415715973535967221869852721 .00000005148554641076956121994511276767154838481760200726351203835429763013462401 43992025569.928573701266488041146654993318703707511666295476720493953024 29448126.764121021618164430206909037173276672 90429072743629540498.107596019456651774561044010001 1.126825030131969720661201
 

Source
 

Recommend
PrincetonBoy
 

一开始以为是一道简单题,实际上也是一道简单题,只是要注意的细节很多

001.00 2   1

000.12 2   .0144

*****    0       1

01.10  2     1.21

10 2           100 (我被这个卡住了,囧)


#include <iostream>
#include <cstring>
#include <string>
using namespace std;
const int MAX=2000;
string sa;
int a[MAX],b[MAX],c[MAX];
int ib,i,j,la;

void mul(const int a[],const int b[],int c[]);
int main(int argc, char *argv[])
{
	while (cin>>sa>>ib){
		if (!ib){
			cout<<"1\n";
			continue;
		}
		memset(a,sizeof(a),0);
		memset(b,sizeof(b),0);
		memset(c,sizeof(c),0);
		la=sa.find('.');
		while (la!=-1 && sa[sa.size()-1]=='0') sa.erase(sa.size()-1,1);
		while (sa[0]=='0') sa.erase(0,1);
		a[0]=sa.size();
		la=sa.find('.');
		if (la!=-1){
			a[0]--;
			sa.erase(la,1);
			la=a[0]-la;
		}
		if (!a[0]){
			cout<<"0\n";
			continue;
		}
		c[0]=a[0];
		for (i=1;i<=a[0];++i){
			a[i]=sa[a[0]-i]-'0';
			c[i]=sa[c[0]-i]-'0';
		}
		for (i=1;i<ib;++i){
			for (j=0;j<=c[0];++j) b[j]=c[j];
			memset(c,0,sizeof(c)); 
			mul(a,b,c);
		} 
	
		if (la!=-1){
			la*=ib;
			if (la>=c[0]){
				la-=c[0]; cout<<'.';
				for (i=0;i<la;++i) cout<<'0';
				for (i=c[0];i;--i) cout<<c[i];
			}
			else{
				for (i=c[0];i>la;--i) cout<<c[i];
				if (i) cout<<'.';
				for (i=la;i;--i) cout<<c[i];
			}
		}
		else{
			for (i=c[0];i;--i) cout<<c[i];
		}
		cout<<endl;
	}
	return 0;
}

void mul(const int a[],const int b[],int c[]){
	int i,j,len;
	for (i=1;i<=a[0];++i)
		for (j=1;j<=b[0];++j){
			c[i+j-1]+=a[i]*b[j];
			c[i+j]+=c[i+j-1]/10;
			c[i+j-1]%=10;
		}
		len=a[0]+b[0];
		while (len && !c[len]) len--;
		c[0]=len;
		if (0==c[0]) c[0]++;
	return;
}


kdwycz的网站:  http://kdwycz.com/

kdwyz的刷题空间:http://blog.youkuaiyun.com/kdwycz



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值