Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, …) which sum to n.
For example, given n = 12, return 3 because 12 = 4 + 4 + 4; given n = 13, return 2 because 13 = 4 + 9.
这道题我是用动态规划来做,然后看讨论有人总结了四种方法 (BFS, DP, static DP and mathematics),参考Summary of 4 different solutions
我的代码:424ms
int numSquares(int n)
{
static vector<int>dp(n+1,1<<30);
dp[0]=0;
for(int i=1;i<=n;i++)
{
int m=sqrt(i);
for(int j=1;j<=m;j++)
{
dp[i]=min(dp[i],dp[i-j*j]+1);
}
}
return dp[n];
}
Static Dynamic Programming: 12ms
class Solution
{
public:
int numSquares(int n)
{
if (n <= 0)
{
return 0;
}
// cntPerfectSquares[i] = the least number of perfect square numbers
// which sum to i. Since cntPerfectSquares is a static vector, if
// cntPerfectSquares.size() > n, we have already calculated the result
// during previous function calls and we can just return the result now.
static vector<int> cntPerfectSquares({0});
// While cntPerfectSquares.size() <= n, we need to incrementally
// calculate the next result until we get the result for n.
while (cntPerfectSquares.size() <= n)
{
int m = cntPerfectSquares.size();
int cntSquares = INT_MAX;
for (int i = 1; i*i <= m; i++)
{
cntSquares = min(cntSquares, cntPerfectSquares[m - i*i] + 1);
}
cntPerfectSquares.push_back(cntSquares);
}
return cntPerfectSquares[n];
}
};
Mathematical Solution: 4ms
class Solution
{
private:
int is_square(int n)
{
int sqrt_n = (int)(sqrt(n));
return (sqrt_n*sqrt_n == n);
}
public:
// Based on Lagrange's Four Square theorem, there
// are only 4 possible results: 1, 2, 3, 4.
int numSquares(int n)
{
// If n is a perfect square, return 1.
if(is_square(n))
{
return 1;
}
// The result is 4 if and only if n can be written in the
// form of 4^k*(8*m + 7). Please refer to
// Legendre's three-square theorem.
while ((n & 3) == 0) // n%4 == 0
{
n >>= 2;
}
if ((n & 7) == 7) // n%8 == 7
{
return 4;
}
// Check whether 2 is the result.
int sqrt_n = (int)(sqrt(n));
for(int i = 1; i <= sqrt_n; i++)
{
if (is_square(n - i*i))
{
return 2;
}
}
return 3;
}
};