剑指offer第三十一题整数中1出现的次数(从1到n整数中1出现的次)

本文介绍了一种高效算法,用于计算指定非负整数区间内数字1出现的总次数。通过分析不同位数对计数的影响,提出了三种情况下的计算规则,并给出了Python实现示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1、10、11、12、13因此共出现6次,但是对于后面问题他就没辙了。ACMer希望你们帮帮他,并把问题更加普遍化,可以很快的求出任意非负整数区间中1出现的次数。

题目分析

写一个python的解法。一、1的数目
编程之美上给出的规律:
1. 如果第i位(自右至左,从1开始标号)上的数字为0,则第i位可能出现1的次数由更高位决定(若没有高位,视高位为0),等于更高位数字X当前位数的权重10i-1。
2. 如果第i位上的数字为1,则第i位上可能出现1的次数不仅受更高位影响,还受低位影响(若没有低位,视低位为0),等于更高位数字X当前位数的权重10i-1+(低位数字+1)。
3. 如果第i位上的数字大于1,则第i位上可能出现1的次数仅由更高位决定(若没有高位,视高位为0),等于(更高位数字+1)X当前位数的权重10i-1。
二、X的数目
这里的  X∈[1,9] ,因为  X=0  不符合下列规律,需要单独计算。
首先要知道以下的规律:
从 1 至 10,在它们的个位数中,任意的 X 都出现了 1 次。
从 1 至 100,在它们的十位数中,任意的 X 都出现了 10 次。
从 1 至 1000,在它们的百位数中,任意的 X 都出现了 100 次。
依此类推,从 1 至  10 i ,在它们的左数第二位(右数第  i  位)中,任意的 X 都出现了  10 i−1  次。
这个规律很容易验证,这里不再多做说明。
接下来以  n=2593,X=5  为例来解释如何得到数学公式。从 1 至 2593 中,数字 5 总计出现了 813 次,其中有 259 次出现在个位,260 次出现在十位,294 次出现在百位,0 次出现在千位。
现在依次分析这些数据,首先是个位。从 1 至 2590 中,包含了 259 个 10,因此任意的 X 都出现了 259 次。最后剩余的三个数 2591, 2592 和 2593,因为它们最大的个位数字 3 < X,因此不会包含任何 5。(也可以这么看,3<X,则个位上可能出现的X的次数仅由更高位决定,等于更高位数字(259)X101-1=259)。
然后是十位。从 1 至 2500 中,包含了 25 个 100,因此任意的 X 都出现了  25×10=250  次。剩下的数字是从 2501 至 2593,它们最大的十位数字 9 > X,因此会包含全部 10 个 5。最后总计 250 + 10 = 260。(也可以这么看,9>X,则十位上可能出现的X的次数仅由更高位决定,等于更高位数字(25+1)X102-1=260)。
接下来是百位。从 1 至 2000 中,包含了 2 个 1000,因此任意的 X 都出现了  2×100=200  次。剩下的数字是从 2001 至 2593,它们最大的百位数字 5 == X,这时情况就略微复杂,它们的百位肯定是包含 5 的,但不会包含全部 100 个。如果把百位是 5 的数字列出来,是从 2500 至 2593,数字的个数与百位和十位数字相关,是 93+1 = 94。最后总计 200 + 94 = 294。(也可以这么看,5==X,则百位上可能出现X的次数不仅受更高位影响,还受低位影响,等于更高位数字(2)X103-1+(93+1)=294)。
最后是千位。现在已经没有更高位,因此直接看最大的千位数字 2 < X,所以不会包含任何 5。(也可以这么看,2<X,则千位上可能出现的X的次数仅由更高位决定,等于更高位数字(0)X104-1=0)。
到此为止,已经计算出全部数字 5 的出现次数。
总结一下以上的算法,可以看到,当计算右数第  i  位包含的 X 的个数时:
取第  i  位左边(高位)的数字,乘以  10 i−1 ,得到基础值  a 。
取第  i  位数字,计算修正值:
如果大于 X,则结果为  a+ 10 i−1 。
如果小于 X,则结果为  a 。
如果等 X,则取第  i  位右边(低位)数字,设为  b ,最后结果为  a+b+1 。
相应的代码非常简单,效率也非常高,时间复杂度只有  O( log 10 n) 。

方法一:Python解法

class Solution:
    def NumberOf1Between1AndN_Solution(self, n):
        l = []
        for i in range(n+1):
            l.append(i)
        return str(l).count('1')
方法二:
class Solution {
public:
    int NumberOf1Between1AndN_Solution(int n)
    {
        int count=0;
        if(n<1) return 0;
        for(int i=1;i<=n;++i)
            {
            int temp=i;
            while(temp)
                {
                if(temp%10==1)
                    ++count;
                temp/=10;
            }
        }
        return count;
    }
};
方法三:LeetCode解法
class Solution {
public:
    int NumberOf1Between1AndN_Solution(int n){ 
        int ones = 0;
        for (long long m = 1; m <= n; m *= 10)
            ones += (n/m + 8) / 10 * m + (n/m % 10 == 1) * (n%m + 1);
         return ones;
     
    }
};



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值