Coursera ML笔记3

本文深入探讨了逻辑回归算法的基础原理及应用,包括二元与多元分类问题的解决方法、梯度下降法、正则化技术等,并介绍了如何通过极大似然法进行参数估计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分类问题

  • 二元分类问题
  • 多元分类问题

逻辑回归算法

逻辑回归模型

sigmoid function/logestic function
g(z)=11+ez
hθ(x)=g(θTX)
hθ(x)=11+eθTX=py=1|x;θ)

决策边界: θX=0

  • 线性决策边界
  • 非线性决策边界

if hθ(x)>=0.5 (θX>=0) ; then y=1;
else y=0;
the decision boundary is a properity not of
the training set , but of the hypothesis and of the parameters.

cost function

构造Cost Function

J(θ)=1mi=1mCost(hθ(x(i)),y(i))Cost(hθ(x),y)=log(hθ(x))Cost(hθ(x),y)=log(1hθ(x))if y = 1if y = 0

Cost(hθ(x),y)=0 if hθ(x)=yCost(hθ(x),y) if y=0andhθ(x)1Cost(hθ(x),y) if y=1andhθ(x)0

Cost(hθ(x),y)=ylog(hθ(x))(1y)log(1hθ(x))
J(θ)=1mi=1m[y(i)log(hθ(x(i)))+(1y(i))log(1hθ(x(i)))]
J(θ)θj=1mmi=1(hθ(x(i)y(i))xij

极大似然法

y=11+ez
hθ(x)=11+eθTX=eθTX1+eθTX
lny1y=θTX
即:lnpy=1|x)py=0|x)=θTX
py=1|x;θ)=hθ(x)=eθTX1+eθTX
py=0|x;θ)=1hθ(x)=11+eθTX
py=0|x;θ)=(hθ(x))y(1hθ(x))1y
L(θ)=p(y|X;θ)=mi=1p(y(i)|x(i);θ)=mi=1(hθ(x(i)))y(i)(1hθ(x(i)))1y(i)

l(θ)=logL(θ)=1mi=1m[y(i)log(hθ(x(i)))+(1y(i))log(1hθ(x(i)))]

g'(z)=g(z)(1g(z)),得

Gradient descent

θj:=θjαθjJ(θ)=θjαmmi=1(hθ(x(i))y(i))x(i)j

feature scalling

向量化

h=g(Xθ)J(θ)=1m(yTlog(h)(1y)Tlog(1h))

grad=1m(hy)X

θ:=θαmXT(g(Xθ)y⃗ )

Conjugate gradient

BFGS

L-BFGS

多分类问题

One-vs-all classification

y{0,1...n}h(0)θ(x)=P(y=0|x;θ)h(1)θ(x)=P(y=1|x;θ)h(n)θ(x)=P(y=n|x;θ)prediction=maxi(h(i)θ(x))

过度拟合

  • 欠拟合/高偏差
  • 过拟合/高方差

1) Reduce the number of features:
- Manually select which features to keep.
-Use a model selection algorithm (studied later in the course).
2) Regularization
- Keep all the features, but reduce the magnitude of parameters θj.
- Regularization works well when we have a lot of slightly useful features.

minθ 12m [mi=1(hθ(x(i))y(i))2+λ nj=1θ2j]

正则线性回归

正则梯度下降

J(θ)= 12m [mi=1(hθ(x(i))y(i))2+λ nj=1θ2j]

Repeat {    θ0:=θ0α 1m i=1m(hθ(x(i))y(i))x(i)0    θj:=θjα [(1m i=1m(hθ(x(i))y(i))x(i)j)+λmθj]}          j{1,2...n}

θj:=θj(1αλm)α1mmi=1(hθ(x(i))y(i))x(i)j

正则正规方程

θ=(XTX+λL)1XTywhere  L=0111

正则逻辑回归

正则梯度下降

J(θ)=1mmi=1[y(i) log(hθ(x(i)))+(1y(i)) log(1hθ(x(i)))] whenj=0
J(θ)=1mmi=1[y(i) log(hθ(x(i)))+(1y(i)) log(1hθ(x(i)))]+λ2mnj=1θ2j

J(θ)θj=1mmi=1(hθ(x(i)y(i))xij forj=0
J(θ)θj=1mmi=1(hθ(x(i)y(i))xij+λmθj forj>=1

正则高级优化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值