模型是我自己保存的手写字体模型
#!/usr/bin/python
# -*- coding:utf-8 -*-import input_data as input
import tensorflow as tf
from tensorflow.python.framework import graph_util
from tensorflow.python.platform import gfile
import numpy as np
def transfer():
mnist = input.read_data_sets("/home/myjob/Downloads/Mnist/", one_hot=True)model_path_pb = "/home/myjob/Downloads/Mnist/"
y_ = tf.placeholder("float32", [None, 10], name='input_y')
with tf.Session() as sess:
#读取需要迁移的模型
with gfile.FastGFile(model_path_pb + 'model.pb', 'rb') as f:graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
sess.graph.as_default()
tf.import_graph_def(graph_def, name='') # 导入计算图
input_x = sess.graph.get_tensor_by_name('input_x:0')
h_fc = sess.graph.get_tensor_by_name('fc1:0')
# h_fc层以上的层停止梯度传递,相当于keras中的freeze
hfc_sg = tf.stop_gradient(h_fc)
#添加新的层
w_fc1 = weight_variable([1024, 1024])
b_fc1 = bias_Variable([1024])
h_fc1 = tf.nn.relu(tf.matmul(hfc_sg, w_fc1) + b_fc1, name="fc2")
w_fc2 = weight_variable([1024, 10])
b_fc2 = bias_Variable([10])
y_conv2d = tf.nn.softmax(tf.matmul(h_fc1, w_fc2) + b_fc2, name="outt")
#交叉熵损失函数
cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv2d))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv2d, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float32"))
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for i in range(101):
batch = mnist.train.next_batch(64)
if i % 2 == 0:
train_accuracy = accuracy.eval(feed_dict={
input_x: batch[0], y_: batch[1]})
print "step %d, training accuracy %g" % (i, train_accuracy)
#将迁移后的模型保存
constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph_def, ['outt'])
with tf.gfile.FastGFile(model_path_pb + 'model_transform.pb', mode='wb') as f:
f.write(constant_graph.SerializeToString())
train_step.run(feed_dict={input_x:batch[0], y_: batch[1]})