import os
import json
import numpy as np
from labelme import utils
from skimage import img_as_ubyte
import matplotlib.pyplot as plt
from PIL import Image
jsondir = '.\\json'
svdir = '.\\jsonmask'
label_name_to_value = {'_background_': 0,'quexian1':1,'qiaobian2':2,'quexian2':3,'quexian2':4,'quexian2':5}
def cvtmask(jspath,svpath):
data = json.load(open(jspath))
imageData = data.get('imageData')
img = utils.img_b64_to_arr(imageData) # 原始图像
for shape in sorted(data['shapes'], key=lambda x: x['label']):
label_name = shape['label']
print('label_name==',label_name)
if label_name in label_name_to_value:
label_value = label_name_to_value[label_name]
else:
label_value = len(label_name_to_value)
label_name_to_value[label_name] = label_value
lbl, _ = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value, type='instance')
mask = img_as_ubyte(lbl)
#mask = np.uint8(mask) * 255 # 掩码
# 掩码像素值 0,1*10+100,2*10+100,3*10+100
mask = np.uint8(mask)*10+100
im = Image.fromarray(mask)
im.save(svpath)
if __name__ =='__main__':
for jsnm in os.listdir(jsondir):
print('js==',jsnm)
if('.json' in jsnm):
jsonpth = os.path.join(jsondir,jsnm)
print('jspath==',jsonpth)
svpth = os.path.join(svdir,jsnm.replace('.json','.bmp'))
cvtmask(jsonpth ,svpth )
lableme标注完转分割数据集mask图的生成
于 2025-03-13 17:21:21 首次发布
部署运行你感兴趣的模型镜像
您可能感兴趣的与本文相关的镜像
Python3.8
Conda
Python
Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本
4656

被折叠的 条评论
为什么被折叠?



